結果
| 問題 | 
                            No.1320 Two Type Min Cost Cycle
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2023-04-02 00:46:15 | 
| 言語 | Go  (1.23.4)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 756 ms / 2,000 ms | 
| コード長 | 4,977 bytes | 
| コンパイル時間 | 14,193 ms | 
| コンパイル使用メモリ | 225,532 KB | 
| 実行使用メモリ | 8,660 KB | 
| 最終ジャッジ日時 | 2024-09-24 14:28:16 | 
| 合計ジャッジ時間 | 24,440 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge4 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 57 | 
ソースコード
package main
import (
	"bufio"
	"fmt"
	"os"
)
func main() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()
	var directed, n, m int
	fmt.Fscan(in, &directed, &n, &m)
	edges := make([]Edge, 0, m)
	for i := 0; i < m; i++ {
		var u, v, w int
		fmt.Fscan(in, &u, &v, &w)
		u--
		v--
		edges = append(edges, Edge{u, v, w})
	}
	res := MincostCycle(n, edges, directed == 1)
	if res == INF {
		res = -1
	}
	fmt.Fprintln(out, res)
}
const INF int = 1e18
type Edge struct{ from, to, weight int }
// 返回最小环的权值和. 不存在时返回INF.
//  !把每条边断开,然后求从断开的边的两个端点到另一端点的最短路.
func MincostCycle(n int, edges []Edge, directed bool) int {
	m := len(edges)
	res := INF
	for i := 0; i < m; i++ {
		e := edges[i]
		cost := e.weight
		from, to := e.to, e.from
		gi := make([][]Edge, n)
		for j := 0; j < m; j++ {
			if i != j {
				e := edges[j]
				gi[e.from] = append(gi[e.from], e)
				if !directed {
					gi[e.to] = append(gi[e.to], Edge{e.to, e.from, e.weight})
				}
			}
		}
		var x int
		if !directed {
			x = bfs01Point(n, gi, from, to)
		} else {
			x = dijkstraPoint(n, gi, from, to)
		}
		if x == -1 {
			x = INF
		}
		res = min(res, cost+x)
	}
	return res
}
func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}
func bfs01Point(n int, adjList [][]Edge, start, target int) int {
	dist := make([]int, n)
	for i := range dist {
		dist[i] = INF
	}
	queue := Deque{}
	queue.Append(start)
	dist[start] = 0
	for !queue.Empty() {
		cur := queue.PopLeft()
		if cur == target {
			return dist[cur]
		}
		for _, e := range adjList[cur] {
			next, cost := e.to, e.weight
			if dist[next] > dist[cur]+cost {
				dist[next] = dist[cur] + cost
				if cost == 0 {
					queue.AppendLeft(next)
				} else {
					queue.Append(next)
				}
			}
		}
	}
	return INF
}
type D = int
type Deque struct{ l, r []D }
func (q Deque) Empty() bool {
	return len(q.l) == 0 && len(q.r) == 0
}
func (q Deque) Size() int {
	return len(q.l) + len(q.r)
}
func (q *Deque) AppendLeft(v D) {
	q.l = append(q.l, v)
}
func (q *Deque) Append(v D) {
	q.r = append(q.r, v)
}
func (q *Deque) PopLeft() (v D) {
	if len(q.l) > 0 {
		q.l, v = q.l[:len(q.l)-1], q.l[len(q.l)-1]
	} else {
		v, q.r = q.r[0], q.r[1:]
	}
	return
}
func (q *Deque) Pop() (v D) {
	if len(q.r) > 0 {
		q.r, v = q.r[:len(q.r)-1], q.r[len(q.r)-1]
	} else {
		v, q.l = q.l[0], q.l[1:]
	}
	return
}
func (q Deque) Front() D {
	if len(q.l) > 0 {
		return q.l[len(q.l)-1]
	}
	return q.r[0]
}
func (q Deque) Back() D {
	if len(q.r) > 0 {
		return q.r[len(q.r)-1]
	}
	return q.l[0]
}
// 0 <= i < q.Size()
func (q Deque) At(i int) D {
	if i < len(q.l) {
		return q.l[len(q.l)-1-i]
	}
	return q.r[i-len(q.l)]
}
func dijkstraPoint(n int, adjList [][]Edge, start, target int) int {
	dist := make([]int, n)
	for i := range dist {
		dist[i] = INF
	}
	dist[start] = 0
	pq := nhp(func(a, b H) int {
		return a.dist - b.dist
	}, []H{{start, 0}})
	for pq.Len() > 0 {
		curNode := pq.Pop()
		cur, curDist := curNode.node, curNode.dist
		if cur == target {
			return curDist
		}
		if curDist > dist[cur] {
			continue
		}
		for _, edge := range adjList[cur] {
			next, weight := edge.to, edge.weight
			if cand := curDist + weight; cand < dist[next] {
				dist[next] = cand
				pq.Push(H{next, cand})
			}
		}
	}
	return INF
}
type H = struct{ node, dist int }
// Should return a number:
//    negative , if a < b
//    zero     , if a == b
//    positive , if a > b
type Comparator func(a, b H) int
func nhp(comparator Comparator, nums []H) *Heap {
	nums = append(nums[:0:0], nums...)
	heap := &Heap{comparator: comparator, data: nums}
	heap.heapify()
	return heap
}
type Heap struct {
	data       []H
	comparator Comparator
}
func (h *Heap) Push(value H) {
	h.data = append(h.data, value)
	h.pushUp(h.Len() - 1)
}
func (h *Heap) Pop() (value H) {
	if h.Len() == 0 {
		return
	}
	value = h.data[0]
	h.data[0] = h.data[h.Len()-1]
	h.data = h.data[:h.Len()-1]
	h.pushDown(0)
	return
}
func (h *Heap) Peek() (value H) {
	if h.Len() == 0 {
		return
	}
	value = h.data[0]
	return
}
func (h *Heap) Len() int { return len(h.data) }
func (h *Heap) heapify() {
	n := h.Len()
	for i := (n >> 1) - 1; i > -1; i-- {
		h.pushDown(i)
	}
}
func (h *Heap) pushUp(root int) {
	for parent := (root - 1) >> 1; parent >= 0 && h.comparator(h.data[root], h.data[parent]) < 0; parent = (root - 1) >> 1 {
		h.data[root], h.data[parent] = h.data[parent], h.data[root]
		root = parent
	}
}
func (h *Heap) pushDown(root int) {
	n := h.Len()
	for left := (root<<1 + 1); left < n; left = (root<<1 + 1) {
		right := left + 1
		minIndex := root
		if h.comparator(h.data[left], h.data[minIndex]) < 0 {
			minIndex = left
		}
		if right < n && h.comparator(h.data[right], h.data[minIndex]) < 0 {
			minIndex = right
		}
		if minIndex == root {
			return
		}
		h.data[root], h.data[minIndex] = h.data[minIndex], h.data[root]
		root = minIndex
	}
}