結果

問題 No.3105 Міжнародний підрядок саміт
ユーザー 👑 p-adicp-adic
提出日時 2023-04-02 01:43:55
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 4,957 bytes
コンパイル時間 3,257 ms
コンパイル使用メモリ 223,528 KB
実行使用メモリ 161,896 KB
最終ジャッジ日時 2024-10-12 02:09:19
合計ジャッジ時間 7,122 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include <bits/stdc++.h>
using namespace std;

using ll = long long;

#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT

template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }

inline CEXPR( int , bound_N , 13 );

struct CombSum
{
  int m_val[bound_N+1];
  constexpr CombSum() : m_val()
  {
    FOREQ( N , 1 , bound_N ){
      if( ( N & 1 ) == 1 ){
	m_val[N] = 1 << ( N - 1 );
      } else {
	int& m_val_N = m_val[N];
	int comb = 1;
	FOREQ( p , 1 , N ){
	  ( comb *= ( N - p + 1 ) ) /= p;
	  if( ( p & 1 ) == 1 ){
	    m_val_N += comb;
	  }
	}
      }
    }
  }
};

int main()
{
  UNTIE;
  CEXPR( int , bound_T , 6000 );
  CIN_ASSERT( T , 1 , bound_T );
  CEXPR( int , bound_Pl , 100000000 );
  CEXPR( int , bound_Pr , 1000000000 );
  CEXPR( ll , bound_Ai , 1000000000 );
  CEXPR( ll , bound_evenness , ll( 1 ) << 62 );
  CEXPR( int , lim_x_shift , bound_N * ( bound_N - 1 ) + 1 );
  CEXPR( int , bound_x , lim_x_shift >> 1 );
  CEXPR( int , bound_B , 1 << bound_N );
  bool x[bound_B][bound_N+1][lim_x_shift] = {};
  int xl[bound_B][bound_N+1][lim_x_shift] = {};
  int xr[bound_B][bound_N+1][lim_x_shift] = {};
  FOR( B , 1 , bound_B ){
    bool ( &xB )[bound_N+1][lim_x_shift] = x[B];
    int B_copy = B;
    int A[bound_N] = {};
    int B_card = 0;
    FOR( d , 0 , bound_N ){
      if( ( B_copy & 1 ) == 1 ){
	A[B_card++] = d;
      }
      B_copy >>= 1;
    }
    int power = 1 << B_card;
    FOREQ( B_p , 0 , power ){
      B_copy = B_p;
      int x_shift = bound_x;
      int p = 0;
      FOR( d , 0 , B_card ){
	( B_copy & 1 ) == 1 ? ( p++ , x_shift += A[d] ) : x_shift -= A[d];
	B_copy >>= 1;
      }
      xB[p][x_shift] = true;
    }
    int ( &xlB )[bound_N+1][lim_x_shift] = xl[B];
    int ( &xrB )[bound_N+1][lim_x_shift] = xr[B];
    FOREQ( p , 0 , B_card ){
      bool ( &xBp )[lim_x_shift] = xB[p];
      int ( &xlBp )[lim_x_shift] = xlB[p];
      int y_prev = lim_x_shift - 1;
      FOREQINV( y , lim_x_shift - 1 , 0 ){
	if( xBp[y] ){
	  FOREQINV( z , y_prev , y ){
	    xlBp[z] = y;
	  }
	}
      }
      FOREQINV( z , y_prev , 0 ){
	xlBp[z] = -1;
      }
      int ( &xrBp )[lim_x_shift] = xrB[p];
      y_prev = 0;
      FOR( y , 0 , lim_x_shift ){
	if( xBp[y] ){
	  FOREQ( z , y_prev , y ){
	    xrBp[z] = y;
	  }
	  y_prev = y + 1;
	}
      }
      FOREQ( z , y_prev , lim_x_shift ){
	xrBp[z] = -1;
      }
    }
  }
  constexpr CombSum comb_sum{};
  REPEAT( T ){
    CIN_ASSERT( N , 1 , bound_N );
    CIN_ASSERT( P , bound_Pl , bound_Pr );
    CIN_ASSERT( A0 , 1 , bound_Ai );
    CIN_ASSERT( A1 , A0 , bound_Ai );
    ll d = A1 - A0;
    FOR( i , 2 , N ){
      cin >> A1;
    }
    ll answer;
    if( d == 0 ){
      answer = comb_sum.m_val[N] * A0;
    } else {
      answer = 0;
      if( d < 0 ){
	d *= -1;
	A0 -= d * ( N - 1 );
      }
      int power_N = 1 << N;
      FOR( B , 1 , power_N ){
	bool ( &xB )[bound_N+1][lim_x_shift] = x[B];
	int ( &xlB )[bound_N+1][lim_x_shift] = xl[B];
	int ( &xrB )[bound_N+1][lim_x_shift] = xr[B];
	int B_copy = B;
	int B_card = 0;
	while( B_copy != 0 ){
	  if( ( B_copy & 1 ) == 1 ){
	    B_card++;
	  }
	  B_copy >>= 1;
	}
	ll evenness = bound_evenness; 
	FOREQ( p , 0 , B_card ){
	  int ( &xlBp )[lim_x_shift] = xlB[p];
	  int ( &xrBp )[lim_x_shift] = xrB[p];
	  ll A0_factor = ( B_card - ( p << 1 ) ) * A0;
	  ll y = A0_factor / d;
	  if( y > bound_x ){
	    y = bound_x;
	  } else if( y < -bound_x ){
	    y = -bound_x;
	  }
	  int& yl = xlBp[y];
	  if( yl != -1 ){
	    ll evenness_curr = Absolute( -A0_factor + yl * d );
	    if( evenness > evenness_curr ){
	      evenness = evenness_curr;
	    }
	  }
	  int& yr = xrBp[y];
	  if( yr != -1 ){
	    ll evenness_curr = Absolute( -A0_factor + yr * d );
	    if( evenness > evenness_curr ){
	      evenness = evenness_curr;
	    }
	  }
	}
	answer += evenness;
      }
    }
    COUT( answer % P );
  }
  QUIT;
}
0