結果
問題 | No.3105 Міжнародний підрядок саміт |
ユーザー | 👑 p-adic |
提出日時 | 2023-04-02 02:13:58 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 5,049 bytes |
コンパイル時間 | 3,274 ms |
コンパイル使用メモリ | 224,616 KB |
実行使用メモリ | 161,628 KB |
最終ジャッジ日時 | 2024-10-12 02:09:11 |
合計ジャッジ時間 | 7,608 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 98 ms
161,244 KB |
testcase_01 | AC | 2,240 ms
161,492 KB |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
ソースコード
#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include <bits/stdc++.h> using namespace std; using ll = long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; } inline CEXPR( int , bound_N , 13 ); struct CombSum { int m_val[bound_N+1]; constexpr CombSum() : m_val() { FOREQ( N , 1 , bound_N ){ if( ( N & 1 ) == 1 ){ m_val[N] = 1 << ( N - 1 ); } else { int& m_val_N = m_val[N]; int comb = 1; FOREQ( p , 1 , N ){ ( comb *= ( N - p + 1 ) ) /= p; if( ( p & 1 ) == 1 ){ m_val_N += comb; } } } } } }; int main() { UNTIE; CEXPR( int , bound_T , 6000 ); CIN_ASSERT( T , 1 , bound_T ); CEXPR( int , bound_Pl , 100000000 ); CEXPR( int , bound_Pr , 1000000000 ); CEXPR( ll , bound_Ai , 1000000000 ); CEXPR( ll , bound_evenness , ll( 1 ) << 62 ); CEXPR( int , lim_x_shift , bound_N * ( bound_N - 1 ) + 1 ); CEXPR( int , bound_x , lim_x_shift >> 1 ); CEXPR( int , bound_B , 1 << bound_N ); static bool x[bound_B][bound_N+1][lim_x_shift] = {}; static int xl[bound_B][bound_N+1][lim_x_shift]; static int xr[bound_B][bound_N+1][lim_x_shift]; FOR( B , 1 , bound_B ){ bool ( &xB )[bound_N+1][lim_x_shift] = x[B]; int B_copy = B; int A[bound_N] = {}; int B_card = 0; FOR( d , 0 , bound_N ){ if( ( B_copy & 1 ) == 1 ){ A[B_card++] = d; } B_copy >>= 1; } int power = 1 << B_card; FOREQ( B_p , 0 , power ){ B_copy = B_p; int x_shift = bound_x; int p = 0; FOR( d , 0 , B_card ){ ( B_copy & 1 ) == 1 ? ( p++ , x_shift += A[d] ) : x_shift -= A[d]; B_copy >>= 1; } xB[p][x_shift] = true; } int ( &xlB )[bound_N+1][lim_x_shift] = xl[B]; int ( &xrB )[bound_N+1][lim_x_shift] = xr[B]; FOREQ( p , 0 , B_card ){ bool ( &xBp )[lim_x_shift] = xB[p]; int ( &xlBp )[lim_x_shift] = xlB[p]; int y_prev = lim_x_shift - 1; FOREQINV( y , lim_x_shift - 1 , 0 ){ if( xBp[y] ){ FOREQINV( z , y_prev , y ){ xlBp[z] = y - bound_x; } y_prev = y - 1; } } FOREQINV( z , y_prev , 0 ){ xlBp[z] = bound_x + 1; } int ( &xrBp )[lim_x_shift] = xrB[p]; y_prev = 0; FOR( y , 0 , lim_x_shift ){ if( xBp[y] ){ FOREQ( z , y_prev , y ){ xrBp[z] = y - bound_x; } y_prev = y + 1; } } FOR( z , y_prev , lim_x_shift ){ xrBp[z] = bound_x + 1; } } } constexpr CombSum comb_sum{}; REPEAT( T ){ CIN_ASSERT( N , 1 , bound_N ); CIN_ASSERT( P , bound_Pl , bound_Pr ); CIN_ASSERT( A0 , 1 , bound_Ai ); CIN_ASSERT( A1 , A0 , bound_Ai ); ll d = A1 - A0; FOR( i , 2 , N ){ cin >> A1; } ll answer; if( d == 0 ){ answer = comb_sum.m_val[N] * A0; } else { answer = 0; if( d < 0 ){ d *= -1; A0 -= d * ( N - 1 ); } int power_N = 1 << N; FOR( B , 1 , power_N ){ int ( &xlB )[bound_N+1][lim_x_shift] = xl[B]; int ( &xrB )[bound_N+1][lim_x_shift] = xr[B]; int B_copy = B; int B_card = 0; while( B_copy != 0 ){ if( ( B_copy & 1 ) == 1 ){ B_card++; } B_copy >>= 1; } ll evenness = bound_evenness; FOREQ( p , 0 , B_card ){ int ( &xlBp )[lim_x_shift] = xlB[p]; int ( &xrBp )[lim_x_shift] = xrB[p]; ll A0_factor = ( B_card - ( p << 1 ) ) * A0; ll y = A0_factor / d - ( ( A0_factor < 0 && A0_factor % d != 0 ) ? 1 : 0 ) + bound_x; if( y >= lim_x_shift ){ y = lim_x_shift - 1; } else if( y < 0 ){ y = 0; } int& yl = xlBp[y]; if( yl <= bound_x ){ ll evenness_curr = Absolute( -A0_factor + yl * d ); if( evenness > evenness_curr ){ evenness = evenness_curr; } } int& yr = xrBp[y]; if( yr <= bound_x ){ ll evenness_curr = Absolute( -A0_factor + yr * d ); if( evenness > evenness_curr ){ evenness = evenness_curr; } } } answer += evenness; } } COUT( answer % P ); } QUIT; }