結果

問題 No.3078 Very Simple Traveling Salesman Problem
ユーザー UMRgurashiUMRgurashi
提出日時 2023-04-02 14:39:23
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 3,809 bytes
コンパイル時間 2,242 ms
コンパイル使用メモリ 203,548 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-24 23:54:35
合計ジャッジ時間 3,257 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#define int long long
#define double long double

using namespace std;



#define rep(i,n) for(int i=0;i<n;++i)
#define REP(i,n) for(int i=1;i<=n;i++)
#define sREP(i,n) for(int i=1;i*i<=n;++i)
#define krep(i,k,n) for(int i=(k);i<n+k;i++)
#define Krep(i,k,n) for(int i=(k);i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define Rrep(i,n) for(int i=n;i>0;i--)
#define frep(i,n) for(auto &x:n)
#define LAST(x) x[x.size()-1]
#define ALL(x) (x).begin(),(x).end()
#define MAX(x) *max_element(ALL(x))
#define MIN(x) *min_element(ALL(x)
#define RUD(a,b) (((a)+(b)-1)/(b))
#define sum1_n(n) ((n)*(n+1)/2)
#define SUM1n2(n) (n*(2*n+1)*(n+1))/6
#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))
#define SZ(x) ((int)(x).size())
#define PB push_back
#define Fi first
#define Se second
#define lower(vec, i) *lower_bound(ALL(vec), i)
#define upper(vec, i) *upper_bound(ALL(vec), i)
#define lower_count(vec, i) (int)(lower_bound(ALL(vec), i) - (vec).begin())
#define acc(vec) accumulate(ALL(vec),0LL)


template<class... T>
void in(T&... a) {
	(cin >> ... >> a);
}

int ini() { int x; cin >> x; return x; }
string ins() { string x; cin >> x; return x; }

template <class T>
using v = vector<T>;
template <class T>
using vv = vector<v<T>>;
template <class T>
using vvv = vector<vv<T>>;

using pint = pair<int, int>;
using tint = tuple<int, int, int>;
using qint = tuple<int, int, int, int>;



namespace geometry {
	using Real = double;
	const Real EPS = 1e-12;
	const Real PI = acos(static_cast<Real>(-1));

	enum {
		OUT, ON, IN
	};

	inline int sign(const Real& r) {
		return r <= -EPS ? -1 : r >= EPS ? 1 : 0;
	}

	inline bool equals(const Real& a, const Real& b) {
		return sign(a - b) == 0;
	}
}

namespace geometry {
	using Point = complex< Real >;

	istream& operator>>(istream& is, Point& p) {
		Real a, b;
		is >> a >> b;
		p = Point(a, b);
		return is;
	}

	ostream& operator<<(ostream& os, const Point& p) {
		return os << real(p) << " " << imag(p);
	}

	Point operator*(const Point& p, const Real& d) {
		return Point(real(p) * d, imag(p) * d);
	}

	// rotate point p counterclockwise by theta rad
	Point rotate(Real theta, const Point& p) {
		return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p));
	}

	Real cross(const Point& a, const Point& b) {
		return real(a) * imag(b) - imag(a) * real(b);
	}

	Real dot(const Point& a, const Point& b) {
		return real(a) * real(b) + imag(a) * imag(b);
	}

	bool compare_x(const Point& a, const Point& b) {
		return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b);
	}

	bool compare_y(const Point& a, const Point& b) {
		return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b);
	}

	using Points = vector< Point >;
}

namespace geometry {
	using Polygon = vector< Point >;
	using Polygons = vector< Polygon >;
}

namespace geometry {
	int convex_polygon_contains(const Polygon& Q, const Point& p) {
		int N = (int)Q.size();
		complex<double> x(3.0, 0.0);
		Point g = (Q[0] + Q[N / 3] + Q[N * 2 / 3]) / x;
		if (equals(imag(g), imag(p)) && equals(real(g), real(p))) return 2;
		Point gp = p - g;
		int l = 0, r = N;
		while (r - l > 1) {
			int mid = l + (r-l) / 2;
			Point gl = Q[l] - g;
			Point gm = Q[mid] - g;
			if (cross(gl, gm) > 0) {
				if (cross(gl, gp) >= 0 && cross(gm, gp) <= 0) r = mid;
				else l = mid;
			}
			else {
				if (cross(gl, gp) <= 0 && cross(gm, gp) >= 0) l = mid;
				else r = mid;
			}
		}
		r %= N;
		Real v = cross(Q[l] - p, Q[r] - p);
		return sign(v) == 0 ? 1 : sign(v) == -1 ? 0 : 2;
	}
}

using namespace geometry;

void solve() {
	int N = ini();
	cout << N << endl;
}



signed main() {
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	//cout << fixed << setprecision(14);
	//cout << setfill('0') << right << setw(4)<<
	solve();
}
0