結果

問題 No.3105 Міжнародний підрядок саміт
ユーザー 👑 p-adicp-adic
提出日時 2023-04-02 17:15:13
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 7,555 bytes
コンパイル時間 3,848 ms
コンパイル使用メモリ 235,556 KB
実行使用メモリ 180,608 KB
最終ジャッジ日時 2024-11-15 03:40:43
合計ジャッジ時間 9,034 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 129 ms
180,404 KB
testcase_01 AC 1,733 ms
180,316 KB
testcase_02 RE -
testcase_03 AC 1,860 ms
180,604 KB
testcase_04 AC 99 ms
180,408 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include <bits/stdc++.h>
using namespace std;

using ll = long long;

#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define GETLINE( S ) string S; getline( cin , S )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT

#define GETLINE_COUNT( S , VARIABLE_NUMBER ) GETLINE( S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S  = S.size(); { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S.substr( i , 1 ) == " " ){ count++; } } assert( count + 1 == VARIABLE_NUMBER ); }
// |N| <= BOUNDを満たすNをSから構築
#define STOI( S , N , BOUND ) TYPE_OF( BOUND ) N = 0; { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND / 10 ? true : N == BOUND / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }

inline CEXPR( int , bound_N , 13 );
inline CEXPR( int , lim_B , 1 << bound_N );

// O(2^N)
struct Card
{
  int m_val[lim_B];
  constexpr Card() : m_val()
  {
    int two_power = 1;
    FOR( d , 0 , bound_N ){
      FOR( B , 0 , two_power ){
	m_val[B | two_power] = m_val[B] + 1;
      }
      two_power <<= 1;
    }
  }
};

inline CEXPR( int , lim_x_shift , bound_N * ( bound_N - 1 ) + 1 );
inline CEXPR( int , bound_x , lim_x_shift >> 1 );
inline CEXPR( int , bound_three_power , 1594323 ); // 3^13

// O(3^N)
struct X
{
  bool m_val[lim_B][bound_N+1][lim_x_shift];
  // constexpr X() : m_val()
  inline X() : m_val()
  {
    int x[bound_three_power] = { bound_x };
    int B[bound_three_power] = {};
    int p[bound_three_power] = {};
    int three_power = 1;
    int three_power2 = 2;
    int two_power = 1;
    FOR( d , 0 , bound_N ){
      FOR( i , 0 , three_power ){
	int& xi = x[i];
	int i_plus = i + three_power;
	int i_plus2 = i + three_power2;
	x[i_plus] = xi - d;
	x[i_plus2] = xi + d;
	B[i_plus] = B[i_plus2] = B[i] | two_power;
	p[i_plus2] = ( p[i_plus] = p[i] ) + 1;
      }
      three_power = three_power2 + three_power;
      three_power2 = three_power << 1;
      two_power <<= 1;
    }
    FOR( i , 1 , bound_three_power ){
      m_val[B[i]][p[i]][x[i]] = true;
    }
  }
};

// O(N 3^N)
struct Xlr
{
  int m_val[2][lim_B][bound_N+1][lim_x_shift];
  inline Xlr( const int ( &card )[lim_B] , const bool ( &x )[lim_B][bound_N+1][lim_x_shift] ) : m_val()
  {
    int ( &xl )[lim_B][bound_N+1][lim_x_shift] = m_val[0];
    int ( &xr )[lim_B][bound_N+1][lim_x_shift] = m_val[1];
    FOR( B , 1 , lim_B ){
      const bool ( &xB )[bound_N+1][lim_x_shift] = x[B];
      const int& B_card = card[B];
      int ( &xlB )[bound_N+1][lim_x_shift] = xl[B];
      int ( &xrB )[bound_N+1][lim_x_shift] = xr[B];
      FOREQ( p , 0 , B_card ){
	const bool ( &xBp )[lim_x_shift] = xB[p];
	int ( &xlBp )[lim_x_shift] = xlB[p];
	int y_prev = lim_x_shift - 1;
	FOREQINV( y , lim_x_shift - 1 , 0 ){
	  if( xBp[y] ){
	    FOREQINV( z , y_prev , y ){
	      xlBp[z] = y - bound_x;
	    }
	    y_prev = y - 1;
	  }
	}
	FOREQINV( z , y_prev , 0 ){
	  xlBp[z] = bound_x + 1;
	}
	int ( &xrBp )[lim_x_shift] = xrB[p];
	y_prev = 0;
	FOR( y , 0 , lim_x_shift ){
	  if( xBp[y] ){
	    FOREQ( z , y_prev , y ){
	      xrBp[z] = y - bound_x;
	    }
	    y_prev = y + 1;
	  }
	}
	FOR( z , y_prev , lim_x_shift ){
	  xrBp[z] = bound_x + 1;
	}
      }
    }
  }
};
  
struct CombSum
{
  int m_val[bound_N+1];
  constexpr CombSum() : m_val()
  {
    FOREQ( N , 1 , bound_N ){
      if( ( N & 1 ) == 1 ){
	m_val[N] = 1 << ( N - 1 );
      } else {
	int& m_val_N = m_val[N];
	int comb = 1;
	FOREQ( p , 1 , N ){
	  ( comb *= ( N - p + 1 ) ) /= p;
	  if( ( p & 1 ) == 1 ){
	    m_val_N += comb;
	  }
	}
      }
    }
  }
};

int main()
{
  UNTIE;
  CEXPR( int , bound_T , 6000 );
  GETLINE_COUNT( T_str , 1 );
  STOI( T_str , T , bound_T );
  CEXPR( int , bound_P , 1000000000 );
  CEXPR( ll , bound_Ai , 1000000000 );
  CEXPR( ll , bound_evenness , ll( 1 ) << 62 );
  constexpr Card card{};
  // constexpr X x{}; // コンパイル時間制限30[s]をオーバー
  static X x{};
  static Xlr xlr( card.m_val , x.m_val );
  int ( &xl )[lim_B][bound_N+1][lim_x_shift] = xlr.m_val[0];
  int ( &xr )[lim_B][bound_N+1][lim_x_shift] = xlr.m_val[1];
  constexpr CombSum comb_sum{};
  REPEAT( T ){
    GETLINE_COUNT( NP_str , 2 );
    STOI( NP_str , N , bound_N );
    STOI( NP_str , P , bound_P );
    GETLINE_COUNT( A_str , N );
    STOI( A_str , A0 , bound_Ai );
    STOI( A_str , A1 , bound_Ai );
    ll d = A1 - A0;
    ll answer;
    if( d == 0 ){
      answer = comb_sum.m_val[N] * A0;
    } else {
      answer = 0;
      if( d < 0 ){
	d *= -1;
	A0 -= d * ( N - 1 );
      }
      int power_N = 1 << N;
      FOR( B , 1 , power_N ){
	int ( &xlB )[bound_N+1][lim_x_shift] = xl[B];
	int ( &xrB )[bound_N+1][lim_x_shift] = xr[B];
	const int& B_card = card.m_val[B];
	ll evenness = bound_evenness;
	ll A0_factor = B_card * A0;
	ll A02 = A0 << 1;
	FOREQ( p , 0 , B_card ){
	  ll y = A0_factor / d - ( ( A0_factor < 0 && A0_factor % d != 0 ) ? 1 : 0 ) + bound_x;
	  y >= lim_x_shift ? y = lim_x_shift - 1 : y < 0 ? y = 0 : y;
	  int ( &xlBp )[lim_x_shift] = xlB[p];
	  int& yl = xlBp[y];
	  if( yl <= bound_x ){
	    ll evenness_curr = -A0_factor + yl * d ;
	    evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr;
	    evenness > evenness_curr ? evenness = evenness_curr : evenness;
	  }
	  int ( &xrBp )[lim_x_shift] = xrB[p];
	  int& yr = xrBp[y];
	  if( yr <= bound_x ){
	    ll evenness_curr = -A0_factor + yr * d ;
	    evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr;
	    evenness > evenness_curr ? evenness = evenness_curr : evenness;
	  }
	  A0_factor -= A02;
	}
	answer += evenness;
      }
    }
    COUT( answer % P );
  }
  QUIT;
}
0