結果
問題 | No.3105 Міжнародний підрядок саміт |
ユーザー | 👑 p-adic |
提出日時 | 2023-04-02 17:15:13 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 7,555 bytes |
コンパイル時間 | 3,848 ms |
コンパイル使用メモリ | 235,556 KB |
実行使用メモリ | 180,608 KB |
最終ジャッジ日時 | 2024-11-15 03:40:43 |
合計ジャッジ時間 | 9,034 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 129 ms
180,404 KB |
testcase_01 | AC | 1,733 ms
180,316 KB |
testcase_02 | RE | - |
testcase_03 | AC | 1,860 ms
180,604 KB |
testcase_04 | AC | 99 ms
180,408 KB |
ソースコード
#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include <bits/stdc++.h> using namespace std; using ll = long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define GETLINE( S ) string S; getline( cin , S ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define GETLINE_COUNT( S , VARIABLE_NUMBER ) GETLINE( S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S = S.size(); { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S.substr( i , 1 ) == " " ){ count++; } } assert( count + 1 == VARIABLE_NUMBER ); } // |N| <= BOUNDを満たすNをSから構築 #define STOI( S , N , BOUND ) TYPE_OF( BOUND ) N = 0; { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND / 10 ? true : N == BOUND / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } } inline CEXPR( int , bound_N , 13 ); inline CEXPR( int , lim_B , 1 << bound_N ); // O(2^N) struct Card { int m_val[lim_B]; constexpr Card() : m_val() { int two_power = 1; FOR( d , 0 , bound_N ){ FOR( B , 0 , two_power ){ m_val[B | two_power] = m_val[B] + 1; } two_power <<= 1; } } }; inline CEXPR( int , lim_x_shift , bound_N * ( bound_N - 1 ) + 1 ); inline CEXPR( int , bound_x , lim_x_shift >> 1 ); inline CEXPR( int , bound_three_power , 1594323 ); // 3^13 // O(3^N) struct X { bool m_val[lim_B][bound_N+1][lim_x_shift]; // constexpr X() : m_val() inline X() : m_val() { int x[bound_three_power] = { bound_x }; int B[bound_three_power] = {}; int p[bound_three_power] = {}; int three_power = 1; int three_power2 = 2; int two_power = 1; FOR( d , 0 , bound_N ){ FOR( i , 0 , three_power ){ int& xi = x[i]; int i_plus = i + three_power; int i_plus2 = i + three_power2; x[i_plus] = xi - d; x[i_plus2] = xi + d; B[i_plus] = B[i_plus2] = B[i] | two_power; p[i_plus2] = ( p[i_plus] = p[i] ) + 1; } three_power = three_power2 + three_power; three_power2 = three_power << 1; two_power <<= 1; } FOR( i , 1 , bound_three_power ){ m_val[B[i]][p[i]][x[i]] = true; } } }; // O(N 3^N) struct Xlr { int m_val[2][lim_B][bound_N+1][lim_x_shift]; inline Xlr( const int ( &card )[lim_B] , const bool ( &x )[lim_B][bound_N+1][lim_x_shift] ) : m_val() { int ( &xl )[lim_B][bound_N+1][lim_x_shift] = m_val[0]; int ( &xr )[lim_B][bound_N+1][lim_x_shift] = m_val[1]; FOR( B , 1 , lim_B ){ const bool ( &xB )[bound_N+1][lim_x_shift] = x[B]; const int& B_card = card[B]; int ( &xlB )[bound_N+1][lim_x_shift] = xl[B]; int ( &xrB )[bound_N+1][lim_x_shift] = xr[B]; FOREQ( p , 0 , B_card ){ const bool ( &xBp )[lim_x_shift] = xB[p]; int ( &xlBp )[lim_x_shift] = xlB[p]; int y_prev = lim_x_shift - 1; FOREQINV( y , lim_x_shift - 1 , 0 ){ if( xBp[y] ){ FOREQINV( z , y_prev , y ){ xlBp[z] = y - bound_x; } y_prev = y - 1; } } FOREQINV( z , y_prev , 0 ){ xlBp[z] = bound_x + 1; } int ( &xrBp )[lim_x_shift] = xrB[p]; y_prev = 0; FOR( y , 0 , lim_x_shift ){ if( xBp[y] ){ FOREQ( z , y_prev , y ){ xrBp[z] = y - bound_x; } y_prev = y + 1; } } FOR( z , y_prev , lim_x_shift ){ xrBp[z] = bound_x + 1; } } } } }; struct CombSum { int m_val[bound_N+1]; constexpr CombSum() : m_val() { FOREQ( N , 1 , bound_N ){ if( ( N & 1 ) == 1 ){ m_val[N] = 1 << ( N - 1 ); } else { int& m_val_N = m_val[N]; int comb = 1; FOREQ( p , 1 , N ){ ( comb *= ( N - p + 1 ) ) /= p; if( ( p & 1 ) == 1 ){ m_val_N += comb; } } } } } }; int main() { UNTIE; CEXPR( int , bound_T , 6000 ); GETLINE_COUNT( T_str , 1 ); STOI( T_str , T , bound_T ); CEXPR( int , bound_P , 1000000000 ); CEXPR( ll , bound_Ai , 1000000000 ); CEXPR( ll , bound_evenness , ll( 1 ) << 62 ); constexpr Card card{}; // constexpr X x{}; // コンパイル時間制限30[s]をオーバー static X x{}; static Xlr xlr( card.m_val , x.m_val ); int ( &xl )[lim_B][bound_N+1][lim_x_shift] = xlr.m_val[0]; int ( &xr )[lim_B][bound_N+1][lim_x_shift] = xlr.m_val[1]; constexpr CombSum comb_sum{}; REPEAT( T ){ GETLINE_COUNT( NP_str , 2 ); STOI( NP_str , N , bound_N ); STOI( NP_str , P , bound_P ); GETLINE_COUNT( A_str , N ); STOI( A_str , A0 , bound_Ai ); STOI( A_str , A1 , bound_Ai ); ll d = A1 - A0; ll answer; if( d == 0 ){ answer = comb_sum.m_val[N] * A0; } else { answer = 0; if( d < 0 ){ d *= -1; A0 -= d * ( N - 1 ); } int power_N = 1 << N; FOR( B , 1 , power_N ){ int ( &xlB )[bound_N+1][lim_x_shift] = xl[B]; int ( &xrB )[bound_N+1][lim_x_shift] = xr[B]; const int& B_card = card.m_val[B]; ll evenness = bound_evenness; ll A0_factor = B_card * A0; ll A02 = A0 << 1; FOREQ( p , 0 , B_card ){ ll y = A0_factor / d - ( ( A0_factor < 0 && A0_factor % d != 0 ) ? 1 : 0 ) + bound_x; y >= lim_x_shift ? y = lim_x_shift - 1 : y < 0 ? y = 0 : y; int ( &xlBp )[lim_x_shift] = xlB[p]; int& yl = xlBp[y]; if( yl <= bound_x ){ ll evenness_curr = -A0_factor + yl * d ; evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr; evenness > evenness_curr ? evenness = evenness_curr : evenness; } int ( &xrBp )[lim_x_shift] = xrB[p]; int& yr = xrBp[y]; if( yr <= bound_x ){ ll evenness_curr = -A0_factor + yr * d ; evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr; evenness > evenness_curr ? evenness = evenness_curr : evenness; } A0_factor -= A02; } answer += evenness; } } COUT( answer % P ); } QUIT; }