結果
| 問題 |
No.391 CODING WAR
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-04-02 20:49:00 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 149 ms / 2,000 ms |
| コード長 | 6,486 bytes |
| コンパイル時間 | 206 ms |
| コンパイル使用メモリ | 82,312 KB |
| 実行使用メモリ | 72,624 KB |
| 最終ジャッジ日時 | 2024-09-25 00:38:09 |
| 合計ジャッジ時間 | 3,002 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 16 |
ソースコード
class 写像十二相:
"""https://qiita.com/drken/items/f2ea4b58b0d21621bd51"""
__slots__ = ("_fac", "_ifac", "_inv", "_mod")
def __init__(self, size: int, mod: int) -> None:
self._mod = mod
self._fac = [1]
self._ifac = [1]
self._inv = [1]
self._expand(size)
def query(
self,
n: int,
k: int,
*,
isBallSame: bool,
isBoxSame: bool,
atMostOneBallPerBox=False,
noLimitWithBox=False,
atLeastOneBallPerBox=False,
) -> int:
"""n个球放入k个盒子的方案数.
Args:
isBallSame (bool): 球是否有区别.
isBoxSame (bool): 盒子是否有区别.
atMostOneBalPerBox (bool, optional): 每个盒子最多放一个球.
noLimitWithBox (bool, optional): 每个盒子可以放任意个球.
atLeastOneBallPerBox (bool, optional): 每个盒子至少放一个球.
"""
limits = (atMostOneBallPerBox, noLimitWithBox, atLeastOneBallPerBox)
assert limits.count(True) == 1, "Must have one limit and only one limit with box."
if isBallSame and isBoxSame:
if atMostOneBallPerBox:
return self._solve1(n, k)
if noLimitWithBox:
return self._solve2(n, k)
if atLeastOneBallPerBox:
return self._solve3(n, k)
if not isBallSame and isBoxSame:
if atMostOneBallPerBox:
return self._solve4(n, k)
if noLimitWithBox:
return self._solve5(n, k)
if atLeastOneBallPerBox:
return self._solve6(n, k)
if isBallSame and not isBoxSame:
if atMostOneBallPerBox:
return self._solve7(n, k)
if noLimitWithBox:
return self._solve8(n, k)
if atLeastOneBallPerBox:
return self._solve9(n, k)
if not isBallSame and not isBoxSame:
if atMostOneBallPerBox:
return self._solve10(n, k)
if noLimitWithBox:
return self._solve11(n, k)
if atLeastOneBallPerBox:
return self._solve12(n, k)
raise Exception("Unreachable code.")
def _solve1(self, n: int, k: int) -> int:
"""有区别的球放入有区别的盒子(每个盒子最多放一个球)."""
return self.P(n, k)
def _solve2(self, n: int, k: int) -> int:
"""有区别的球放入有区别的盒子(每个盒子可以放任意个球)."""
return pow(k, n, self._mod)
def _solve3(self, n: int, k: int) -> int:
"""有区别的球放入有区别的盒子(每个盒子至少放一个球).
容斥原理:用总方案数减去不合法的方案数.
O(k*logn)
"""
mod = self._mod
res = 0
for i in range(k + 1):
if (k - i) & 1:
res -= self.C(k, i) * pow(i, n, mod)
else:
res += self.C(k, i) * pow(i, n, mod)
res %= mod
return res
def _solve4(self, n: int, k: int) -> int:
"""无区别的球放入有区别的盒子(每个盒子最多放一个球)."""
return self.C(n, k)
def _solve5(self, n: int, k: int) -> int:
"""无区别的球放入有区别的盒子(每个盒子可以放任意个球)."""
return self.C(n + k - 1, n)
def _solve6(self, n: int, k: int) -> int:
"""无区别的球放入有区别的盒子(每个盒子至少放一个球)."""
return self.C(n - 1, k - 1)
def _solve7(self, n: int, k: int) -> int:
"""有区别的球放入无区别的盒子(每个盒子最多放一个球)."""
return 0 if n > k else 1
def _solve8(self, n: int, k: int) -> int:
"""有区别的球放入无区别的盒子(每个盒子可以放任意个球).
贝尔数.
"""
...
def _solve9(self, n: int, k: int) -> int:
"""有区别的球放入无区别的盒子(每个盒子至少放一个球).
第二类斯特林数.
"""
...
def _solve10(self, n: int, k: int) -> int:
"""无区别的球放入无区别的盒子(每个盒子最多放一个球)."""
...
def _solve11(self, n: int, k: int) -> int:
"""无区别的球放入无区别的盒子(每个盒子可以放任意个球).
分割数.
"""
...
def _solve12(self, n: int, k: int) -> int:
"""无区别的球放入无区别的盒子(每个盒子至少放一个球).
分割数.
"""
...
def fac(self, k: int) -> int:
self._expand(k)
return self._fac[k]
def ifac(self, k: int) -> int:
self._expand(k)
return self._ifac[k]
def inv(self, k: int) -> int:
self._expand(k)
return self._inv[k]
def C(self, n: int, k: int) -> int:
if n < 0 or k < 0 or n < k:
return 0
mod = self._mod
return self.fac(n) * self.ifac(k) % mod * self.ifac(n - k) % mod
def P(self, n: int, k: int) -> int:
if n < 0 or k < 0 or n < k:
return 0
mod = self._mod
return self.fac(n) * self.ifac(n - k) % mod
def H(self, n: int, k: int) -> int:
"""可重复选取元素的组合数"""
return self.C(n + k - 1, k)
def put(self, n: int, k: int) -> int:
"""n个相同的球放入k个不同的盒子(盒子可放任意个球)的方案数."""
return self.C(n + k - 1, n)
def _expand(self, size: int) -> None:
if len(self._fac) < size + 1:
mod = self._mod
preSize = len(self._fac)
diff = size + 1 - preSize
self._fac += [1] * diff
self._ifac += [1] * diff
self._inv += [1] * diff
for i in range(preSize, size + 1):
self._fac[i] = self._fac[i - 1] * i % mod
self._ifac[size] = pow(self._fac[size], mod - 2, mod) # !modInv
for i in range(size - 1, preSize - 1, -1):
self._ifac[i] = self._ifac[i + 1] * (i + 1) % mod
for i in range(preSize, size + 1):
self._inv[i] = self._ifac[i] * self._fac[i - 1] % mod
MOD = int(1e9 + 7)
X = 写像十二相(int(1e5), MOD)
if __name__ == "__main__":
n, k = map(int, input().split())
print(X.query(n, k, isBallSame=True, isBoxSame=True, atLeastOneBallPerBox=True))