結果
問題 | No.391 CODING WAR |
ユーザー |
|
提出日時 | 2023-04-02 20:49:00 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 149 ms / 2,000 ms |
コード長 | 6,486 bytes |
コンパイル時間 | 206 ms |
コンパイル使用メモリ | 82,312 KB |
実行使用メモリ | 72,624 KB |
最終ジャッジ日時 | 2024-09-25 00:38:09 |
合計ジャッジ時間 | 3,002 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 16 |
ソースコード
class 写像十二相:"""https://qiita.com/drken/items/f2ea4b58b0d21621bd51"""__slots__ = ("_fac", "_ifac", "_inv", "_mod")def __init__(self, size: int, mod: int) -> None:self._mod = modself._fac = [1]self._ifac = [1]self._inv = [1]self._expand(size)def query(self,n: int,k: int,*,isBallSame: bool,isBoxSame: bool,atMostOneBallPerBox=False,noLimitWithBox=False,atLeastOneBallPerBox=False,) -> int:"""n个球放入k个盒子的方案数.Args:isBallSame (bool): 球是否有区别.isBoxSame (bool): 盒子是否有区别.atMostOneBalPerBox (bool, optional): 每个盒子最多放一个球.noLimitWithBox (bool, optional): 每个盒子可以放任意个球.atLeastOneBallPerBox (bool, optional): 每个盒子至少放一个球."""limits = (atMostOneBallPerBox, noLimitWithBox, atLeastOneBallPerBox)assert limits.count(True) == 1, "Must have one limit and only one limit with box."if isBallSame and isBoxSame:if atMostOneBallPerBox:return self._solve1(n, k)if noLimitWithBox:return self._solve2(n, k)if atLeastOneBallPerBox:return self._solve3(n, k)if not isBallSame and isBoxSame:if atMostOneBallPerBox:return self._solve4(n, k)if noLimitWithBox:return self._solve5(n, k)if atLeastOneBallPerBox:return self._solve6(n, k)if isBallSame and not isBoxSame:if atMostOneBallPerBox:return self._solve7(n, k)if noLimitWithBox:return self._solve8(n, k)if atLeastOneBallPerBox:return self._solve9(n, k)if not isBallSame and not isBoxSame:if atMostOneBallPerBox:return self._solve10(n, k)if noLimitWithBox:return self._solve11(n, k)if atLeastOneBallPerBox:return self._solve12(n, k)raise Exception("Unreachable code.")def _solve1(self, n: int, k: int) -> int:"""有区别的球放入有区别的盒子(每个盒子最多放一个球)."""return self.P(n, k)def _solve2(self, n: int, k: int) -> int:"""有区别的球放入有区别的盒子(每个盒子可以放任意个球)."""return pow(k, n, self._mod)def _solve3(self, n: int, k: int) -> int:"""有区别的球放入有区别的盒子(每个盒子至少放一个球).容斥原理:用总方案数减去不合法的方案数.O(k*logn)"""mod = self._modres = 0for i in range(k + 1):if (k - i) & 1:res -= self.C(k, i) * pow(i, n, mod)else:res += self.C(k, i) * pow(i, n, mod)res %= modreturn resdef _solve4(self, n: int, k: int) -> int:"""无区别的球放入有区别的盒子(每个盒子最多放一个球)."""return self.C(n, k)def _solve5(self, n: int, k: int) -> int:"""无区别的球放入有区别的盒子(每个盒子可以放任意个球)."""return self.C(n + k - 1, n)def _solve6(self, n: int, k: int) -> int:"""无区别的球放入有区别的盒子(每个盒子至少放一个球)."""return self.C(n - 1, k - 1)def _solve7(self, n: int, k: int) -> int:"""有区别的球放入无区别的盒子(每个盒子最多放一个球)."""return 0 if n > k else 1def _solve8(self, n: int, k: int) -> int:"""有区别的球放入无区别的盒子(每个盒子可以放任意个球).贝尔数."""...def _solve9(self, n: int, k: int) -> int:"""有区别的球放入无区别的盒子(每个盒子至少放一个球).第二类斯特林数."""...def _solve10(self, n: int, k: int) -> int:"""无区别的球放入无区别的盒子(每个盒子最多放一个球)."""...def _solve11(self, n: int, k: int) -> int:"""无区别的球放入无区别的盒子(每个盒子可以放任意个球).分割数."""...def _solve12(self, n: int, k: int) -> int:"""无区别的球放入无区别的盒子(每个盒子至少放一个球).分割数."""...def fac(self, k: int) -> int:self._expand(k)return self._fac[k]def ifac(self, k: int) -> int:self._expand(k)return self._ifac[k]def inv(self, k: int) -> int:self._expand(k)return self._inv[k]def C(self, n: int, k: int) -> int:if n < 0 or k < 0 or n < k:return 0mod = self._modreturn self.fac(n) * self.ifac(k) % mod * self.ifac(n - k) % moddef P(self, n: int, k: int) -> int:if n < 0 or k < 0 or n < k:return 0mod = self._modreturn self.fac(n) * self.ifac(n - k) % moddef H(self, n: int, k: int) -> int:"""可重复选取元素的组合数"""return self.C(n + k - 1, k)def put(self, n: int, k: int) -> int:"""n个相同的球放入k个不同的盒子(盒子可放任意个球)的方案数."""return self.C(n + k - 1, n)def _expand(self, size: int) -> None:if len(self._fac) < size + 1:mod = self._modpreSize = len(self._fac)diff = size + 1 - preSizeself._fac += [1] * diffself._ifac += [1] * diffself._inv += [1] * difffor i in range(preSize, size + 1):self._fac[i] = self._fac[i - 1] * i % modself._ifac[size] = pow(self._fac[size], mod - 2, mod) # !modInvfor i in range(size - 1, preSize - 1, -1):self._ifac[i] = self._ifac[i + 1] * (i + 1) % modfor i in range(preSize, size + 1):self._inv[i] = self._ifac[i] * self._fac[i - 1] % modMOD = int(1e9 + 7)X = 写像十二相(int(1e5), MOD)if __name__ == "__main__":n, k = map(int, input().split())print(X.query(n, k, isBallSame=True, isBoxSame=True, atLeastOneBallPerBox=True))