結果
| 問題 |
No.114 遠い未来
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-04-04 12:06:27 |
| 言語 | Go (1.23.4) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,226 bytes |
| コンパイル時間 | 12,239 ms |
| コンパイル使用メモリ | 221,332 KB |
| 実行使用メモリ | 41,724 KB |
| 最終ジャッジ日時 | 2024-10-01 05:23:21 |
| 合計ジャッジ時間 | 25,809 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 19 WA * 6 |
ソースコード
package main
import (
"bufio"
"fmt"
"math/bits"
"os"
"sort"
"strings"
)
func main() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m, k int
fmt.Fscan(in, &n, &m, &k)
edges := make([][]int, 0, m)
for i := 0; i < m; i++ {
var u, v, w int
fmt.Fscan(in, &u, &v, &w)
u, v = u-1, v-1
edges = append(edges, []int{u, v, w})
}
criticals := make([]int, k)
for i := 0; i < k; i++ {
fmt.Fscan(in, &criticals[i])
criticals[i]--
}
fmt.Fprintln(out, solve(n, edges, criticals))
}
func solve(n int, edges [][]int, criticals []int) int {
if len(criticals) <= 15 {
res, _, _ := MinimumSteinerTree(n, edges, criticals, nil)
return res
}
sort.Slice(edges, func(i, j int) bool {
return edges[i][2] < edges[j][2]
})
notCriticals := []int{}
set := map[int]struct{}{}
for _, c := range criticals {
set[c] = struct{}{}
}
for i := 0; i < n; i++ {
if _, ok := set[i]; !ok {
notCriticals = append(notCriticals, i)
}
}
// 选择点集state时,连通criticals的最小边权之和
cal := func(state int) int {
uf := NewUnionFindArray(n)
ok := 0
cost := 0
for _, e := range edges {
u, v, w := e[0], e[1], e[2]
if state&(1<<u) != 0 && state&(1<<v) != 0 && uf.Union(u, v) {
cost += w
ok++
}
}
if ok == bits.OnesCount(uint(state))-1 {
return cost
}
return INF
}
res := INF
state := 0
for _, c := range criticals {
state |= 1 << c
}
for i := 0; i < (1 << len(notCriticals)); i++ {
curState := state
for j := 0; j < len(notCriticals); j++ {
if i&(1<<j) != 0 {
curState |= 1 << notCriticals[j]
}
}
res = min(res, cal(curState))
}
return res
}
const INF int = 1e18
// 一个联通的无向带权图上有k个关键点 criticals,求联通所有点最小的代价(边权之和)。
// vWeights: 每个顶点的附加权重(一般为make([]int, n))。
func MinimumSteinerTree(n int, edges [][]int, criticals, vWeights []int) (cost int, es, vs []int) {
graph := make([][][3]int, n) // (to,w,ei)
for i, e := range edges {
u, v, w := e[0], e[1], e[2]
graph[u] = append(graph[u], [3]int{v, w, i})
graph[v] = append(graph[v], [3]int{u, w, i})
}
if vWeights == nil {
vWeights = make([]int, n)
}
m := len(edges)
k := len(criticals)
dp := make([][]int, 1<<k)
for i := range dp {
dp[i] = make([]int, n)
for j := range dp[i] {
dp[i][j] = INF
}
}
for i := 0; i < n; i++ {
dp[0][i] = vWeights[i]
}
par := make([][]int, 1<<k)
for i := range par {
par[i] = make([]int, n)
for j := range par[i] {
par[i][j] = -1
}
}
for s := 1; s < 1<<k; s++ {
curDp := dp[s]
curS := s
for curS != 0 {
i := bits.TrailingZeros(uint(curS))
v := criticals[i]
curDp[v] = min(curDp[v], dp[curS^(1<<i)][v])
curS ^= 1 << i
}
for t := s; t >= 0; {
if t == 0 || t == s {
t--
continue
}
for v := 0; v < n; v++ {
cand := dp[t][v] + dp[s^t][v] - vWeights[v]
if cand < curDp[v] {
curDp[v] = cand
par[s][v] = 2 * t
}
}
t = (t - 1) & s
}
inits := make([]H, n)
for i := 0; i < n; i++ {
inits[i] = H{curDp[i], i}
}
pq := NewHeap(func(a, b H) bool {
return a[0] < b[0]
}, inits)
for pq.Len() > 0 {
item := pq.Pop()
dv, v := item[0], item[1]
if dv != curDp[v] {
continue
}
for _, e := range graph[v] {
to, cost, id := e[0], e[1], e[2]
cand := dv + cost + vWeights[to]
if cand < curDp[to] {
curDp[to] = cand
par[s][to] = 2*id + 1
pq.Push(H{cand, to})
}
}
}
}
// 复元
usedV, usedE := make([]bool, n), make([]bool, m)
vToK := make([]int, n)
for i := range vToK {
vToK[i] = -1
}
for i := 0; i < k; i++ {
vToK[criticals[i]] = i
}
root, min_ := 0, INF
for i, v := range dp[len(dp)-1] {
if v < min_ {
root, min_ = i, v
}
}
queue := [][2]int{{(1 << k) - 1, root}}
usedV[root] = true
for len(queue) > 0 {
item := queue[0]
queue = queue[1:]
s, v := item[0], item[1]
if s == 0 {
continue
}
if par[s][v] == -1 {
k := vToK[v]
queue = append(queue, [2]int{s ^ (1 << k), v})
continue
} else if par[s][v]&1 == 1 {
eid := par[s][v] / 2
e := edges[eid]
w := v ^ e[0] ^ e[1]
usedV[w] = true
usedE[eid] = true
queue = append(queue, [2]int{s, w})
continue
} else {
t := par[s][v] / 2
queue = append(queue, [2]int{t, v}, [2]int{s ^ t, v})
}
}
for i := 0; i < n; i++ {
if usedV[i] {
vs = append(vs, i)
}
}
for i := 0; i < m; i++ {
if usedE[i] {
es = append(es, i)
}
}
for _, v := range vs {
cost += vWeights[v]
}
for _, e := range es {
cost += edges[e][2]
}
return
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func mins(nums ...int) int {
res := nums[0]
for _, num := range nums {
if num < res {
res = num
}
}
return res
}
type H = [2]int
func NewHeap(less func(a, b H) bool, nums []H) *Heap {
nums = append(nums[:0:0], nums...)
heap := &Heap{less: less, data: nums}
heap.heapify()
return heap
}
type Heap struct {
data []H
less func(a, b H) bool
}
func (h *Heap) Push(value H) {
h.data = append(h.data, value)
h.pushUp(h.Len() - 1)
}
func (h *Heap) Pop() (value H) {
if h.Len() == 0 {
panic("heap is empty")
}
value = h.data[0]
h.data[0] = h.data[h.Len()-1]
h.data = h.data[:h.Len()-1]
h.pushDown(0)
return
}
func (h *Heap) Peek() (value H) {
if h.Len() == 0 {
panic("heap is empty")
}
value = h.data[0]
return
}
func (h *Heap) Len() int { return len(h.data) }
func (h *Heap) heapify() {
n := h.Len()
for i := (n >> 1) - 1; i > -1; i-- {
h.pushDown(i)
}
}
func (h *Heap) pushUp(root int) {
for parent := (root - 1) >> 1; parent >= 0 && h.less(h.data[root], h.data[parent]); parent = (root - 1) >> 1 {
h.data[root], h.data[parent] = h.data[parent], h.data[root]
root = parent
}
}
func (h *Heap) pushDown(root int) {
n := h.Len()
for left := (root<<1 + 1); left < n; left = (root<<1 + 1) {
right := left + 1
minIndex := root
if h.less(h.data[left], h.data[minIndex]) {
minIndex = left
}
if right < n && h.less(h.data[right], h.data[minIndex]) {
minIndex = right
}
if minIndex == root {
return
}
h.data[root], h.data[minIndex] = h.data[minIndex], h.data[root]
root = minIndex
}
}
// NewUnionFindWithCallback ...
func NewUnionFindArray(n int) *UnionFindArray {
parent, rank := make([]int, n), make([]int, n)
for i := 0; i < n; i++ {
parent[i] = i
rank[i] = 1
}
return &UnionFindArray{
Part: n,
rank: rank,
n: n,
parent: parent,
}
}
type UnionFindArray struct {
// 连通分量的个数
Part int
rank []int
n int
parent []int
}
func (ufa *UnionFindArray) Union(key1, key2 int) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
return true
}
func (ufa *UnionFindArray) UnionWithCallback(key1, key2 int, cb func(big, small int)) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
cb(root2, root1)
return true
}
func (ufa *UnionFindArray) Find(key int) int {
for ufa.parent[key] != key {
ufa.parent[key] = ufa.parent[ufa.parent[key]]
key = ufa.parent[key]
}
return key
}
func (ufa *UnionFindArray) IsConnected(key1, key2 int) bool {
return ufa.Find(key1) == ufa.Find(key2)
}
func (ufa *UnionFindArray) GetGroups() map[int][]int {
groups := make(map[int][]int)
for i := 0; i < ufa.n; i++ {
root := ufa.Find(i)
groups[root] = append(groups[root], i)
}
return groups
}
func (ufa *UnionFindArray) Size(key int) int {
return ufa.rank[ufa.Find(key)]
}
func (ufa *UnionFindArray) String() string {
sb := []string{"UnionFindArray:"}
for root, member := range ufa.GetGroups() {
cur := fmt.Sprintf("%d: %v", root, member)
sb = append(sb, cur)
}
sb = append(sb, fmt.Sprintf("Part: %d", ufa.Part))
return strings.Join(sb, "\n")
}