結果

問題 No.1259 スイッチ
ユーザー atcoder8
提出日時 2023-04-05 12:41:18
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 19 ms / 2,000 ms
コード長 18,720 bytes
コンパイル時間 12,647 ms
コンパイル使用メモリ 403,308 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-10-01 23:21:23
合計ジャッジ時間 15,276 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 61
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

use atcoder8_library::modint::Modint1000000007;
use crate::atcoder8_library::{factorial::Factorial, modint::Pow};
type Mint = Modint1000000007;
fn main() {
println!("{}", solve().val());
}
fn solve() -> Mint {
let (n, k, m) = {
let mut line = String::new();
std::io::stdin().read_line(&mut line).unwrap();
let mut iter = line.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
};
let mut fac: Factorial<Mint> = Factorial::new();
// k1 <=> 1k
// nkd
// * 11d-12,3,...,n: P(n-1,d-1)
// * n-d1,2,...,n: n^(n-d)
// : \sum_{d|k} P(n-1,d-1)n^(n-d)
let back_to_one_comb_num = (1..=n)
.filter(|&d| k % d == 0)
.fold(Mint::new(0), |acc, d| {
acc + fac.permutations(n - 1, d - 1) * Mint::new(n).pow(n - d)
});
if m == 1 {
// k1
back_to_one_comb_num
} else {
// 1n-1
// m1n-1
(Mint::new(n).pow(n) - back_to_one_comb_num) / (n - 1)
}
}
pub mod atcoder8_library {
pub mod modint {
use std::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, ShrAssign, Sub, SubAssign,
};
pub trait RemEuclidU32 {
fn rem_euclid_u32(self, modulus: u32) -> u32;
}
/// Calculate the modular multiplicative inverse of `a` with `m` as modulus.
pub fn modinv(a: u32, m: u32) -> u32 {
assert!(m >= 2);
let (mut a, mut b, mut s, mut t) = (a as i64, m as i64, 1, 0);
while b != 0 {
let q = a / b;
a -= q * b;
std::mem::swap(&mut a, &mut b);
s -= q * t;
std::mem::swap(&mut s, &mut t);
}
assert_eq!(
a.abs(),
1,
"The inverse does not exist. gcd(a, m) = {}",
a.abs()
);
s %= m as i64;
if s < 0 {
s += m as i64;
}
s as u32
}
/// This macro implements rem_euclid_u32 for signed integer types of 32 bits or less.
macro_rules! impl_rem_euclid_u32_for_small_signed {
($($small_signed_type:tt),*) => {
$(
impl RemEuclidU32 for $small_signed_type {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
let ret = (self as i32) % (modulus as i32);
if ret >= 0 {
ret as u32
} else {
(ret + modulus as i32) as u32
}
}
}
)*
};
}
/// This macro implements rem_euclid_u32 for 64-bit signed integer types (including isize).
macro_rules! impl_rem_euclid_u32_for_large_signed {
($($large_signed_type:tt),*) => {
$(
impl RemEuclidU32 for $large_signed_type {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
let ret = (self as i64) % (modulus as i64);
if ret >= 0 {
ret as u32
} else {
(ret + modulus as i64) as u32
}
}
}
)*
};
}
/// This macro implements rem_euclid_u32 for unsigned integer types greater than 32 bits.
macro_rules! impl_rem_euclid_u32_for_small_unsigned {
($($small_unsigned_type:tt),*) => {
$(
impl RemEuclidU32 for $small_unsigned_type {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
self as u32 % modulus
}
}
)*
};
}
/// This macro implements rem_euclid_u32 for 64-bit and larger unsigned integer types (including usize).
macro_rules! impl_rem_euclid_u32_for_large_unsigned {
($($large_unsigned_type:tt),*) => {
$(
impl RemEuclidU32 for $large_unsigned_type {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
(self % modulus as $large_unsigned_type) as u32
}
}
)*
};
}
// Implement rem_euclid_u32 for signed integer types of 32 bits or less.
impl_rem_euclid_u32_for_small_signed!(i8, i16, i32);
// Implement rem_euclid_u32 for 64-bit signed integer types (including isize).
impl_rem_euclid_u32_for_large_signed!(i64, isize);
// Implement rem_euclid_u32 for unsigned integer types of 32 bits or more.
impl_rem_euclid_u32_for_small_unsigned!(u8, u16, u32);
// Implement rem_euclid_u32 for unsigned integer types (including usize) of 64 bits or more.
impl_rem_euclid_u32_for_large_unsigned!(u64, u128, usize);
// Implement rem_euclid_u32 for i128.
impl RemEuclidU32 for i128 {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
let ret = self % (modulus as i128);
if ret >= 0 {
ret as u32
} else {
(ret + modulus as i128) as u32
}
}
}
pub trait Pow<T: Copy + ShrAssign> {
fn pow(self, n: T) -> Self;
}
/// Macro to overload binary operation with `$modint_type` for each integer type
macro_rules! impl_ops {
($modint_type:tt, $($other_type:tt),*) => {
$(
impl Add<$other_type> for $modint_type {
type Output = Self;
fn add(self, rhs: $other_type) -> Self::Output {
self + Self::new(rhs)
}
}
impl Add<$modint_type> for $other_type {
type Output = $modint_type;
fn add(self, rhs: $modint_type) -> Self::Output {
$modint_type::new(self) + rhs
}
}
impl Sub<$other_type> for $modint_type {
type Output = Self;
fn sub(self, rhs: $other_type) -> Self::Output {
self - Self::new(rhs)
}
}
impl Sub<$modint_type> for $other_type {
type Output = $modint_type;
fn sub(self, rhs: $modint_type) -> Self::Output {
$modint_type::new(self) - rhs
}
}
impl Mul<$other_type> for $modint_type {
type Output = Self;
fn mul(self, rhs: $other_type) -> Self::Output {
self * Self::new(rhs)
}
}
impl Mul<$modint_type> for $other_type {
type Output = $modint_type;
fn mul(self, rhs: $modint_type) -> Self::Output {
$modint_type::new(self) * rhs
}
}
impl Div<$other_type> for $modint_type {
type Output = Self;
fn div(self, rhs: $other_type) -> Self::Output {
self / Self::new(rhs)
}
}
impl Div<$modint_type> for $other_type {
type Output = $modint_type;
fn div(self, rhs: $modint_type) -> Self::Output {
$modint_type::new(self) / rhs
}
}
impl AddAssign<$other_type> for $modint_type {
fn add_assign(&mut self, other: $other_type) {
*self = *self + Self::new(other);
}
}
impl SubAssign<$other_type> for $modint_type {
fn sub_assign(&mut self, other: $other_type) {
*self = *self - Self::new(other);
}
}
impl MulAssign<$other_type> for $modint_type {
fn mul_assign(&mut self, other: $other_type) {
*self = *self * Self::new(other);
}
}
impl DivAssign<$other_type> for $modint_type {
fn div_assign(&mut self, other: $other_type) {
*self = *self / Self::new(other);
}
}
)*
};
}
/// This macro defines powers of Modint for unsigned integer types.
macro_rules! impl_power_for_unsigned {
($modint_type:tt, $($unsigned_type:tt),*) => {
$(
impl Pow<$unsigned_type> for $modint_type {
fn pow(self, mut n: $unsigned_type) -> Self {
let mut ret = Self::new(1);
let mut mul = self;
while n != 0 {
if n & 1 == 1 {
ret *= mul;
}
mul *= mul;
n >>= 1;
}
ret
}
}
)*
};
}
/// This macro defines powers of Modint for signed integer types of 32 bits or less.
macro_rules! impl_power_for_small_signed {
($modint_type:tt, $($small_signed_type:tt),*) => {
$(
impl Pow<$small_signed_type> for $modint_type {
fn pow(self, n: $small_signed_type) -> Self {
if n >= 0 {
self.pow(n as u32)
} else {
self.pow(-n as u32).inv()
}
}
}
)*
};
}
/// This macro defines the power of Modint for 64-bit signed integer types (including isize).
macro_rules! impl_power_for_large_signed {
($modint_type:tt, $($large_signed_type:tt),*) => {
$(
impl Pow<$large_signed_type> for $modint_type {
fn pow(self, n: $large_signed_type) -> Self {
if n >= 0 {
self.pow(n as u64)
} else {
self.pow(-n as u64).inv()
}
}
}
)*
};
}
/// This macro generates Modint by specifying the type name and modulus.
macro_rules! generate_modint {
($modint_type:tt, $modulus:literal) => {
#[derive(Debug, Default, Hash, Clone, Copy, PartialEq, Eq)]
pub struct $modint_type {
val: u32,
}
impl $modint_type {
const MOD: u32 = $modulus;
}
impl $modint_type {
pub fn new<T: RemEuclidU32>(val: T) -> Self {
Self {
val: val.rem_euclid_u32($modulus),
}
}
pub fn frac<T: RemEuclidU32>(numer: T, denom: T) -> Self {
Self::new(numer) / Self::new(denom)
}
pub fn raw(val: u32) -> Self {
Self { val }
}
pub fn val(&self) -> u32 {
self.val
}
pub fn inv(&self) -> Self {
Self::new(modinv(self.val, $modulus))
}
}
impl<T: RemEuclidU32> From<T> for $modint_type {
fn from(val: T) -> Self {
Self::new(val)
}
}
impl Add for $modint_type {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self::new(self.val + rhs.val)
}
}
impl Sub for $modint_type {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self::new(self.val + $modulus - rhs.val)
}
}
impl Mul for $modint_type {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
Self::new(self.val as u64 * rhs.val as u64)
}
}
impl Div for $modint_type {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
impl AddAssign for $modint_type {
fn add_assign(&mut self, other: Self) {
*self = *self + other;
}
}
impl SubAssign for $modint_type {
fn sub_assign(&mut self, other: Self) {
*self = *self - other;
}
}
impl MulAssign for $modint_type {
fn mul_assign(&mut self, other: Self) {
*self = *self * other;
}
}
impl DivAssign for $modint_type {
fn div_assign(&mut self, other: Self) {
*self = *self / other;
}
}
impl Neg for $modint_type {
type Output = Self;
fn neg(self) -> Self::Output {
Self::new(Self::MOD - self.val)
}
}
// Define a binary operation between each integer type and $modint_type.
impl_ops!(
$modint_type,
i8,
i16,
i32,
i64,
i128,
isize,
u8,
u16,
u32,
u64,
u128,
usize
);
// Define powers of Modint for unsigned integer types.
impl_power_for_unsigned!($modint_type, u8, u16, u32, u64, u128, usize);
// Define powers of Modint for signed integer types of 32 bits or less.
impl_power_for_small_signed!($modint_type, i8, i16, i32);
// Define Modint powers for 64-bit signed integer types (including isize).
impl_power_for_large_signed!($modint_type, i64, isize);
// Define the power of Modint for 128-bit signed integer types.
impl Pow<i128> for $modint_type {
fn pow(self, n: i128) -> Self {
if n >= 0 {
self.pow(n as u128)
} else {
self.pow(-n as u128).inv()
}
}
}
};
}
// Define Modint with 998244353 as modulus
generate_modint!(Modint998244353, 998244353);
// Define Modint with 1000000007 as modulus
generate_modint!(Modint1000000007, 1000000007);
}
pub mod factorial {
use std::ops::{Div, Mul};
pub struct Factorial<T> {
fac: Vec<T>,
}
impl<T> Default for Factorial<T>
where
T: Clone + From<usize> + Mul<Output = T> + Div<Output = T>,
{
fn default() -> Self {
Self::new()
}
}
impl<T> Factorial<T>
where
T: Clone + From<usize> + Mul<Output = T> + Div<Output = T>,
{
/// Constructs a new, empty `Factorial<T>`.
pub fn new() -> Self {
Self {
fac: vec![T::from(1)],
}
}
/// Returns the factorial of `n`.
pub fn factorial(&mut self, n: usize) -> T {
if self.fac.len() < n + 1 {
for i in (self.fac.len() - 1)..n {
self.fac.push(self.fac[i].clone() * (i + 1).into());
}
}
self.fac[n].clone()
}
/// Returns the number of choices when selecting `k` from `n` and arranging them in a row.
pub fn permutations(&mut self, n: usize, k: usize) -> T {
if n < k {
T::from(0)
} else {
self.factorial(n) / self.factorial(n - k)
}
}
/// Returns the number of choices to select `k` from `n`.
pub fn combinations(&mut self, n: usize, k: usize) -> T {
if n < k {
T::from(0)
} else {
self.factorial(n) / (self.factorial(k) * self.factorial(n - k))
}
}
/// Calculate the number of cases when sample of `k` elements from a set of `n` elements, allowing for duplicates.
pub fn combinations_with_repetition(&mut self, n: usize, k: usize) -> T {
if n == 0 {
if k == 0 {
T::from(1)
} else {
T::from(0)
}
} else {
self.combinations(n + k - 1, k)
}
}
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0