結果

問題 No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│
コンテスト
ユーザー vwxyz
提出日時 2023-04-05 15:15:58
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 5,933 bytes
コンパイル時間 198 ms
コンパイル使用メモリ 82,560 KB
実行使用メモリ 298,656 KB
最終ジャッジ日時 2024-10-02 01:21:48
合計ジャッジ時間 10,719 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 10 TLE * 1 -- * 11
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=None):
        self.p=p
        self.e=e
        if self.e==None:
            self.mod=self.p
        else:
            self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        if self.e==None:
            for i in range(1,N+1):
                self.factorial.append(self.factorial[-1]*i%self.mod)
        else:
            self.cnt=[0]*(N+1)
            for i in range(1,N+1):
                self.cnt[i]=self.cnt[i-1]
                ii=i
                while ii%self.p==0:
                    ii//=self.p
                    self.cnt[i]+=1
                self.factorial.append(self.factorial[-1]*ii%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Fact(self,N):
        if N<0:
            return 0
        retu=self.factorial[N]
        if self.e!=None and self.cnt[N]:
            retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
            retu%=self.mod
        return retu

    def Fact_Inve(self,N):
        if self.e!=None and self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K==0:
            return 1
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
        if self.e!=None:
            cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
            if divisible_count:
                return retu,cnt
            else:
                retu*=pow(self.p,cnt,self.mod)
                retu%=self.mod
        return retu

def NTT(polynomial0,polynomial1):
    if mod==998244353:
        prim_root=3
        prim_root_inve=332748118
    else:
        prim_root=Primitive_Root(mod)
        prim_root_inve=MOD(mod).Pow(prim_root,-1)
    def DFT(polynomial,n,inverse=False):
        if inverse:
            for bit in range(1,n+1):
                a=1<<bit-1
                x=pow(prim_root,mod-1>>bit,mod)
                U=[1]
                for _ in range(a):
                    U.append(U[-1]*x%mod)
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod
            x=pow((mod+1)//2,n,mod)
            for i in range(1<<n):
                polynomial[i]*=x
                polynomial[i]%=mod
        else:
            for bit in range(n,0,-1):
                a=1<<bit-1
                x=pow(prim_root_inve,mod-1>>bit,mod)
                U=[1]
                for _ in range(a):
                    U.append(U[-1]*x%mod)
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod

    l=len(polynomial0)+len(polynomial1)-1
    n=(len(polynomial0)+len(polynomial1)-2).bit_length()
    polynomial0=polynomial0+[0]*((1<<n)-len(polynomial0))
    polynomial1=polynomial1+[0]*((1<<n)-len(polynomial1))
    DFT(polynomial0,n)
    DFT(polynomial1,n)
    ntt=[x*y%mod for x,y in zip(polynomial0,polynomial1)]
    DFT(ntt,n,inverse=True)
    ntt=ntt[:l]
    return ntt

def Primitive_Root(p):
    if p==2:
        return 1
    if p==167772161:
        return 3
    if p==469762049:
        return 3
    if p==754974721:
        return 11
    if p==998244353:
        return 3
    if p==10**9+7:
        return 5
    divisors=[2]
    pp=(p-1)//2
    while pp%2==0:
        pp//=2
    for d in range(3,pp+1,2):
        if d**2>pp:
            break
        if pp%d==0:
            divisors.append(d)
            while pp%d==0:
                pp//=d
    if pp>1:
        divisors.append(pp)
    primitive_root=2
    while True:
        for d in divisors:
            if pow(primitive_root,(p-1)//d,p)==1:
                break
        else:
            return primitive_root
        primitive_root+=1

mod=773001541750008261378049
X,Y,Z=map(int,readline().split())
M=10**9+7
MD=MOD(M)
MD.Build_Fact(2*(X+Y+Z))
ans=0
dp=[MD.Comb(X+c-1,X)*MD.Comb(Y+c-1,Y)%M*MD.Comb(Z+c-1,Z)%M*MD.Fact_Inve(c)%M for c in range(X+Y+Z+1)]
f=[MD.Fact_Inve(n)*(-1)**n%M for n in range(X+Y+Z+1)]
f=NTT(f,dp)
for n in range(X+Y+Z+1):
    f[n]%=M
ans=0
for n in range(X+Y+Z+1):
    ans+=f[n]*MD.Fact(n)%M
ans%=M
print(ans)
0