結果
| 問題 |
No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2023-04-05 15:15:58 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,933 bytes |
| コンパイル時間 | 198 ms |
| コンパイル使用メモリ | 82,560 KB |
| 実行使用メモリ | 298,656 KB |
| 最終ジャッジ日時 | 2024-10-02 01:21:48 |
| 合計ジャッジ時間 | 10,719 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 10 TLE * 1 -- * 11 |
ソースコード
import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=None):
self.p=p
self.e=e
if self.e==None:
self.mod=self.p
else:
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
if self.e==None:
for i in range(1,N+1):
self.factorial.append(self.factorial[-1]*i%self.mod)
else:
self.cnt=[0]*(N+1)
for i in range(1,N+1):
self.cnt[i]=self.cnt[i-1]
ii=i
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append(self.factorial[-1]*ii%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
if N<0:
return 0
retu=self.factorial[N]
if self.e!=None and self.cnt[N]:
retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
retu%=self.mod
return retu
def Fact_Inve(self,N):
if self.e!=None and self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K==0:
return 1
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
if self.e!=None:
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
def NTT(polynomial0,polynomial1):
if mod==998244353:
prim_root=3
prim_root_inve=332748118
else:
prim_root=Primitive_Root(mod)
prim_root_inve=MOD(mod).Pow(prim_root,-1)
def DFT(polynomial,n,inverse=False):
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
x=pow(prim_root,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod
x=pow((mod+1)//2,n,mod)
for i in range(1<<n):
polynomial[i]*=x
polynomial[i]%=mod
else:
for bit in range(n,0,-1):
a=1<<bit-1
x=pow(prim_root_inve,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod
l=len(polynomial0)+len(polynomial1)-1
n=(len(polynomial0)+len(polynomial1)-2).bit_length()
polynomial0=polynomial0+[0]*((1<<n)-len(polynomial0))
polynomial1=polynomial1+[0]*((1<<n)-len(polynomial1))
DFT(polynomial0,n)
DFT(polynomial1,n)
ntt=[x*y%mod for x,y in zip(polynomial0,polynomial1)]
DFT(ntt,n,inverse=True)
ntt=ntt[:l]
return ntt
def Primitive_Root(p):
if p==2:
return 1
if p==167772161:
return 3
if p==469762049:
return 3
if p==754974721:
return 11
if p==998244353:
return 3
if p==10**9+7:
return 5
divisors=[2]
pp=(p-1)//2
while pp%2==0:
pp//=2
for d in range(3,pp+1,2):
if d**2>pp:
break
if pp%d==0:
divisors.append(d)
while pp%d==0:
pp//=d
if pp>1:
divisors.append(pp)
primitive_root=2
while True:
for d in divisors:
if pow(primitive_root,(p-1)//d,p)==1:
break
else:
return primitive_root
primitive_root+=1
mod=773001541750008261378049
X,Y,Z=map(int,readline().split())
M=10**9+7
MD=MOD(M)
MD.Build_Fact(2*(X+Y+Z))
ans=0
dp=[MD.Comb(X+c-1,X)*MD.Comb(Y+c-1,Y)%M*MD.Comb(Z+c-1,Z)%M*MD.Fact_Inve(c)%M for c in range(X+Y+Z+1)]
f=[MD.Fact_Inve(n)*(-1)**n%M for n in range(X+Y+Z+1)]
f=NTT(f,dp)
for n in range(X+Y+Z+1):
f[n]%=M
ans=0
for n in range(X+Y+Z+1):
ans+=f[n]*MD.Fact(n)%M
ans%=M
print(ans)
vwxyz