結果

問題 No.1063 ルートの計算 / Sqrt Calculation
ユーザー UMRgurashiUMRgurashi
提出日時 2023-04-05 23:27:36
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 16,175 bytes
コンパイル時間 5,257 ms
コンパイル使用メモリ 289,052 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-02 02:55:36
合計ジャッジ時間 5,964 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <cstdlib>
#include <chrono>
//using namespace chrono;
#include <atcoder/all>
using namespace atcoder;

#define int long long
#define double long double
#define stoi stoll
//#define endl "\n"
using std::abs;

using namespace std;
constexpr double PI = 3.14159265358979323846;
const  int INF = 1LL << 62;


#define rep(i,n) for(int i=0;i<n;++i)
#define REP(i,n) for(int i=1;i<=n;i++)
#define sREP(i,n) for(int i=1;i*i<=n;++i)
#define krep(i,k,n) for(int i=(k);i<n+k;i++)
#define Krep(i,k,n) for(int i=(k);i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define Rrep(i,n) for(int i=n;i>0;i--)
#define frep(i,n) for(auto &x:n)
#define LAST(x) x[x.size()-1]
#define ALL(x) (x).begin(),(x).end()
#define MAX(x) *max_element(ALL(x))
#define MIN(x) *min_element(ALL(x)
#define RUD(a,b) (((a)+(b)-1)/(b))
#define sum1_n(n) ((n)*(n+1)/2)
#define SUM1n2(n) (n*(2*n+1)*(n+1))/6
#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))
#define SZ(x) ((int)(x).size())
#define PB push_back
#define Fi first
#define Se second
#define lower(vec, i) *lower_bound(ALL(vec), i)
#define upper(vec, i) *upper_bound(ALL(vec), i)
#define lower_count(vec, i) (int)(lower_bound(ALL(vec), i) - (vec).begin())
#define acc(vec) accumulate(ALL(vec),0LL)
template<class... T>
constexpr auto min(T... a) {
	return min(initializer_list<common_type_t<T...>>{a...});
}

template<class... T>
constexpr auto max(T... a) {
	return max(initializer_list<common_type_t<T...>>{a...});
}

template<class... T>
void in(T&... a) {
	(cin >> ... >> a);
}

int ini() { int x; cin >> x; return x; }
string ins() { string x; cin >> x; return x; }

template <class T>
using v = vector<T>;
template <class T>
using vv = vector<v<T>>;
template <class T>
using vvv = vector<vv<T>>;

using pint = pair<int, int>;
using tint = tuple<int, int, int>;
using qint = tuple<int, int, int, int>;

double LOG(int a, int b) {
	return log(b) / log(a);
}
double DISTANCE(int x1, int y1, int x2, int y2) {
	return sqrt(abs(x1 - x2) * abs(x1 - x2) + abs(y1 - y2) * abs(y1 - y2));
}

inline bool BETWEEN(int x, int min, int max) {
	if (min <= x && x <= max)
		return true;
	else
		return false;
}
inline bool between(int x, int min, int max) {
	if (min < x && x < max) return true;
	else return false;
}
inline bool BETWEEN2(int i, int j, int H, int W) {
	if (BETWEEN(i, 0, H - 1) && BETWEEN(j, 0, W - 1)) return true;
	else return false;
}

template<class T>
inline bool chmin(T& a, T b) {
	if (a > b) {
		a = b;
		return true;
	}
	return false;
}
template<class T>
inline bool chmax(T& a, T b) {
	if (a < b) {
		a = b;
		return true;
	}
	return false;
}

inline bool bit(int x, int i) {
	return x >> i & 1;
}


void  yn(bool x) {
	if (x) {
		cout << "Yes" << endl;
	}
	else {
		cout << "No" << endl;
	}
}
void  YN(bool x) {
	if (x) {
		cout << "YES" << endl;
	}
	else {
		cout << "NO" << endl;
	}
}

int ipow(int x, int n) {
	int ans = 1;
	while (n > 0) {
		if (n & 1) ans *= x;
		x *= x;
		n >>= 1;
	}
	return ans;
}

template <typename T>
vector<T> compress(vector<T>& X) {
	vector<T> vals = X;
	sort(ALL(vals));
	vals.erase(unique(ALL(vals)), vals.end());
	rep(i, SZ(X))
		X[i] = lower_bound(ALL(vals), X[i]) - vals.begin();
	return vals;
}

v<pint> prime_factorize(int N) {
	v<pint>  res;
	for (int i = 2; i * i <= N; i++) {
		if (N % i != 0) continue;
		int ex = 0;
		while (N % i == 0) {
			++ex;
			N /= i;
		}
		res.push_back({ i, ex });
	}
	if (N != 1) res.push_back({ N, 1 });
	return res;
}



struct Eratosthenes {
	v<bool> isprime;
	v<int> minfactor;

	Eratosthenes(int N) : isprime(N + 1, true),
		minfactor(N + 1, -1) {
		isprime[0] = false;
		isprime[1] = false;
		minfactor[1] = 1;
		for (int p = 2; p <= N; ++p) {
			if (!isprime[p]) continue;
			minfactor[p] = p;
			for (int q = p * 2; q <= N; q += p) {
				isprime[q] = false;
				if (minfactor[q] == -1) minfactor[q] = p;
			}
		}
	}
	v<pint> factorize(int n) {
		v<pint> res;
		while (n > 1) {
			int p = minfactor[n];
			int exp = 0;
			while (minfactor[n] == p) {
				n /= p;
				++exp;
			}
			res.emplace_back(p, exp);
		}
		return res;
	}
};

int number_of_divisors(v<pint> p) {
	int ans = 1;
	for (pint x : p) {
		ans *= x.second + 1;
	}
	return ans;
}

int sum_of_divisors(v<pint> p) {
	int ans = 1;
	for (pint x : p) {

	}
	return ans;
}

//constexpr int MOD = 1000000007;
//constexpr int MOD = 998244353;
//using mint = modint1000000007;
//using mint = modint998244353;
//using mint = static_modint<1000003>;

#line 2 "prime/fast-factorize.hpp"

#line 2 "inner/inner_math.hpp"

namespace inner {

    using i32 = int32_t;
    using u32 = uint32_t;
    using i64 = int64_t;
    using u64 = uint64_t;

    template <typename T>
    T gcd(T a, T b) {
        while (b) swap(a %= b, b);
        return a;
    }

    template <typename T>
    T inv(T a, T p) {
        T b = p, x = 1, y = 0;
        while (a) {
            T q = b / a;
            swap(a, b %= a);
            swap(x, y -= q * x);
        }
        assert(b == 1);
        return y < 0 ? y + p : y;
    }

    template <typename T, typename U>
    T modpow(T a, U n, T p) {
        T ret = 1 % p;
        for (; n; n >>= 1, a = U(a) * a % p)
            if (n & 1) ret = U(ret) * a % p;
        return ret;
    }

}  // namespace inner
#line 2 "misc/rng.hpp"

namespace my_rand {
    using i64 = long long;
    using u64 = unsigned long long;

    // [0, 2^64 - 1)
    u64 rng() {
        static u64 _x =
            u64(chrono::duration_cast<chrono::nanoseconds>(
                chrono::high_resolution_clock::now().time_since_epoch())
                .count()) *
            10150724397891781847ULL;
        _x ^= _x << 7;
        return _x ^= _x >> 9;
    }

    // [l, r]
    i64 rng(i64 l, i64 r) {
        assert(l <= r);
        return l + rng() % (r - l + 1);
    }

    // [l, r)
    i64 randint(i64 l, i64 r) {
        assert(l < r);
        return l + rng() % (r - l);
    }

    // choose n numbers from [l, r) without overlapping
    vector<i64> randset(i64 l, i64 r, i64 n) {
        assert(l <= r && n <= r - l);
        unordered_set<i64> s;
        for (i64 i = n; i; --i) {
            i64 m = randint(l, r + 1 - i);
            if (s.find(m) != s.end()) m = r - i;
            s.insert(m);
        }
        vector<i64> ret;
        for (auto& x : s) ret.push_back(x);
        return ret;
    }

    // [0.0, 1.0)
    double rnd() { return rng() * 5.42101086242752217004e-20; }

    template <typename T>
    void randshf(vector<T>& v) {
        int n = v.size();
        for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);
    }

}  // namespace my_rand

using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
#line 2 "modint/arbitrary-prime-modint.hpp"



struct ArbitraryLazyMontgomeryModInt {
    using mint = ArbitraryLazyMontgomeryModInt;
    using i32 = int32_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

    static u32 mod;
    static u32 r;
    static u32 n2;

    static u32 get_r() {
        u32 ret = mod;
        for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
        return ret;
    }

    static void set_mod(u32 m) {
        assert(m < (1 << 30));
        assert((m & 1) == 1);
        mod = m;
        n2 = -u64(m) % m;
        r = get_r();
        assert(r * mod == 1);
    }

    u32 a;

    ArbitraryLazyMontgomeryModInt() : a(0) {}
    ArbitraryLazyMontgomeryModInt(const int64_t& b)
        : a(reduce(u64(b% mod + mod)* n2)) {};

    static u32 reduce(const u64& b) {
        return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
    }

    mint& operator+=(const mint& b) {
        if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
        return *this;
    }

    mint& operator-=(const mint& b) {
        if (i32(a -= b.a) < 0) a += 2 * mod;
        return *this;
    }

    mint& operator*=(const mint& b) {
        a = reduce(u64(a) * b.a);
        return *this;
    }

    mint& operator/=(const mint& b) {
        *this *= b.inverse();
        return *this;
    }

    mint operator+(const mint& b) const { return mint(*this) += b; }
    mint operator-(const mint& b) const { return mint(*this) -= b; }
    mint operator*(const mint& b) const { return mint(*this) *= b; }
    mint operator/(const mint& b) const { return mint(*this) /= b; }
    bool operator==(const mint& b) const {
        return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
    }
    bool operator!=(const mint& b) const {
        return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
    }
    mint operator-() const { return mint() - mint(*this); }

    mint pow(u64 n) const {
        mint ret(1), mul(*this);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const mint& b) {
        return os << b.get();
    }

    friend istream& operator>>(istream& is, mint& b) {
        int64_t t;
        is >> t;
        b = ArbitraryLazyMontgomeryModInt(t);
        return (is);
    }

    mint inverse() const { return pow(mod - 2); }

    u32 get() const {
        u32 ret = reduce(a);
        return ret >= mod ? ret - mod : ret;
    }

    static u32 get_mod() { return mod; }
};
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2;
#line 2 "modint/modint-montgomery64.hpp"



struct montgomery64 {
    using mint = montgomery64;
    using i64 = int64_t;
    using u64 = uint64_t;
    using u128 = __uint128_t;

    static u64 mod;
    static u64 r;
    static u64 n2;

    static u64 get_r() {
        u64 ret = mod;
        for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret;
        return ret;
    }

    static void set_mod(u64 m) {
        assert(m < (1LL << 62));
        assert((m & 1) == 1);
        mod = m;
        n2 = -u128(m) % m;
        r = get_r();
        assert(r * mod == 1);
    }

    u64 a;

    montgomery64() : a(0) {}
    montgomery64(const int64_t& b) : a(reduce((u128(b) + mod)* n2)) {};

    static u64 reduce(const u128& b) {
        return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
    }

    mint& operator+=(const mint& b) {
        if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;
        return *this;
    }

    mint& operator-=(const mint& b) {
        if (i64(a -= b.a) < 0) a += 2 * mod;
        return *this;
    }

    mint& operator*=(const mint& b) {
        a = reduce(u128(a) * b.a);
        return *this;
    }

    mint& operator/=(const mint& b) {
        *this *= b.inverse();
        return *this;
    }

    mint operator+(const mint& b) const { return mint(*this) += b; }
    mint operator-(const mint& b) const { return mint(*this) -= b; }
    mint operator*(const mint& b) const { return mint(*this) *= b; }
    mint operator/(const mint& b) const { return mint(*this) /= b; }
    bool operator==(const mint& b) const {
        return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
    }
    bool operator!=(const mint& b) const {
        return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
    }
    mint operator-() const { return mint() - mint(*this); }

    mint pow(u128 n) const {
        mint ret(1), mul(*this);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const mint& b) {
        return os << b.get();
    }

    friend istream& operator>>(istream& is, mint& b) {
        int64_t t;
        is >> t;
        b = montgomery64(t);
        return (is);
    }

    mint inverse() const { return pow(mod - 2); }

    u64 get() const {
        u64 ret = reduce(a);
        return ret >= mod ? ret - mod : ret;
    }

    static u64 get_mod() { return mod; }
};
typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2;
#line 7 "prime/fast-factorize.hpp"

namespace fast_factorize {
    using u64 = uint64_t;

    template <typename mint>
    bool miller_rabin(u64 n, vector<u64> as) {
        if (mint::get_mod() != n) mint::set_mod(n);
        u64 d = n - 1;
        while (~d & 1) d >>= 1;
        mint e{ 1 }, rev{ int64_t(n - 1) };
        for (u64 a : as) {
            if (n <= a) break;
            u64 t = d;
            mint y = mint(a).pow(t);
            while (t != n - 1 && y != e && y != rev) {
                y *= y;
                t *= 2;
            }
            if (y != rev && t % 2 == 0) return false;
        }
        return true;
    }

    bool is_prime(u64 n) {
        if (~n & 1) return n == 2;
        if (n <= 1) return false;
        if (n < (1LL << 30))
            return miller_rabin<ArbitraryLazyMontgomeryModInt>(n, { 2, 7, 61 });
        else
            return miller_rabin<montgomery64>(
                n, { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 });
    }

    template <typename mint, typename T>
    T pollard_rho(T n) {
        if (~n & 1) return 2;
        if (is_prime(n)) return n;
        if (mint::get_mod() != n) mint::set_mod(n);
        mint R, one = 1;
        auto f = [&](mint x) { return x * x + R; };
        auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
        while (1) {
            mint x, y, ys, q = one;
            R = rnd_(), y = rnd_();
            T g = 1;
            constexpr int m = 128;
            for (int r = 1; g == 1; r <<= 1) {
                x = y;
                for (int i = 0; i < r; ++i) y = f(y);
                for (int k = 0; g == 1 && k < r; k += m) {
                    ys = y;
                    for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
                    g = inner::gcd<T>(q.get(), n);
                }
            }
            if (g == n) do
                g = inner::gcd<T>((x - (ys = f(ys))).get(), n);
            while (g == 1);
            if (g != n) return g;
        }
        exit(1);
    }

    using i64 = long long;

    vector<i64> inner_factorize(u64 n) {
        if (n <= 1) return {};
        u64 p;
        if (n <= (1LL << 30))
            p = pollard_rho<ArbitraryLazyMontgomeryModInt, uint32_t>(n);
        else
            p = pollard_rho<montgomery64, uint64_t>(n);
        if (p == n) return { i64(p) };
        auto l = inner_factorize(p);
        auto r = inner_factorize(n / p);
        copy(begin(r), end(r), back_inserter(l));
        return l;
    }

    vector<i64> factorize(u64 n) {
        auto ret = inner_factorize(n);
        sort(begin(ret), end(ret));
        return ret;
    }

    map<i64, i64> factor_count(u64 n) {
        map<i64, i64> mp;
        for (auto& x : factorize(n)) mp[x]++;
        return mp;
    }

    vector<i64> divisors(u64 n) {
        if (n == 0) return {};
        vector<pair<i64, i64>> v;
        for (auto& p : factorize(n)) {
            if (v.empty() || v.back().first != p) {
                v.emplace_back(p, 1);
            }
            else {
                v.back().second++;
            }
        }
        vector<i64> ret;
        auto f = [&](auto rc, int i, i64 x) -> void {
            if (i == (int)v.size()) {
                ret.push_back(x);
                return;
            }
            for (int j = v[i].second;; --j) {
                rc(rc, i + 1, x);
                if (j == 0) break;
                x *= v[i].first;
            }
        };
        f(f, 0, 1);
        sort(begin(ret), end(ret));
        return ret;
    }

}  // namespace fast_factorize

using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;
using fast_factorize::is_prime;

/**
 * @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
 * @docs docs/prime/fast-factorize.md
 */


void solve() {
	int N = ini();
	auto p = factor_count(N);
	int a = 1, b = 1;
	for (auto x : p) {
		if (x.second % 2 == 1)a *= x.first;
		b *= ipow(x.first, x.second / 2);
	}
	cout << b << " " << a;
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cout << fixed << setprecision(14);
	//cout << setfill('0') << right << setw(4)<<
	solve();
}
0