結果
| 問題 | No.1063 ルートの計算 / Sqrt Calculation |
| コンテスト | |
| ユーザー |
UMRgurashi
|
| 提出日時 | 2023-04-05 23:27:36 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 33 ms / 2,000 ms |
| コード長 | 16,175 bytes |
| 記録 | |
| コンパイル時間 | 4,416 ms |
| コンパイル使用メモリ | 278,820 KB |
| 最終ジャッジ日時 | 2025-02-11 23:11:20 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 14 |
ソースコード
#include <bits/stdc++.h>
#include <cstdlib>
#include <chrono>
//using namespace chrono;
#include <atcoder/all>
using namespace atcoder;
#define int long long
#define double long double
#define stoi stoll
//#define endl "\n"
using std::abs;
using namespace std;
constexpr double PI = 3.14159265358979323846;
const int INF = 1LL << 62;
#define rep(i,n) for(int i=0;i<n;++i)
#define REP(i,n) for(int i=1;i<=n;i++)
#define sREP(i,n) for(int i=1;i*i<=n;++i)
#define krep(i,k,n) for(int i=(k);i<n+k;i++)
#define Krep(i,k,n) for(int i=(k);i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define Rrep(i,n) for(int i=n;i>0;i--)
#define frep(i,n) for(auto &x:n)
#define LAST(x) x[x.size()-1]
#define ALL(x) (x).begin(),(x).end()
#define MAX(x) *max_element(ALL(x))
#define MIN(x) *min_element(ALL(x)
#define RUD(a,b) (((a)+(b)-1)/(b))
#define sum1_n(n) ((n)*(n+1)/2)
#define SUM1n2(n) (n*(2*n+1)*(n+1))/6
#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))
#define SZ(x) ((int)(x).size())
#define PB push_back
#define Fi first
#define Se second
#define lower(vec, i) *lower_bound(ALL(vec), i)
#define upper(vec, i) *upper_bound(ALL(vec), i)
#define lower_count(vec, i) (int)(lower_bound(ALL(vec), i) - (vec).begin())
#define acc(vec) accumulate(ALL(vec),0LL)
template<class... T>
constexpr auto min(T... a) {
return min(initializer_list<common_type_t<T...>>{a...});
}
template<class... T>
constexpr auto max(T... a) {
return max(initializer_list<common_type_t<T...>>{a...});
}
template<class... T>
void in(T&... a) {
(cin >> ... >> a);
}
int ini() { int x; cin >> x; return x; }
string ins() { string x; cin >> x; return x; }
template <class T>
using v = vector<T>;
template <class T>
using vv = vector<v<T>>;
template <class T>
using vvv = vector<vv<T>>;
using pint = pair<int, int>;
using tint = tuple<int, int, int>;
using qint = tuple<int, int, int, int>;
double LOG(int a, int b) {
return log(b) / log(a);
}
double DISTANCE(int x1, int y1, int x2, int y2) {
return sqrt(abs(x1 - x2) * abs(x1 - x2) + abs(y1 - y2) * abs(y1 - y2));
}
inline bool BETWEEN(int x, int min, int max) {
if (min <= x && x <= max)
return true;
else
return false;
}
inline bool between(int x, int min, int max) {
if (min < x && x < max) return true;
else return false;
}
inline bool BETWEEN2(int i, int j, int H, int W) {
if (BETWEEN(i, 0, H - 1) && BETWEEN(j, 0, W - 1)) return true;
else return false;
}
template<class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
inline bool bit(int x, int i) {
return x >> i & 1;
}
void yn(bool x) {
if (x) {
cout << "Yes" << endl;
}
else {
cout << "No" << endl;
}
}
void YN(bool x) {
if (x) {
cout << "YES" << endl;
}
else {
cout << "NO" << endl;
}
}
int ipow(int x, int n) {
int ans = 1;
while (n > 0) {
if (n & 1) ans *= x;
x *= x;
n >>= 1;
}
return ans;
}
template <typename T>
vector<T> compress(vector<T>& X) {
vector<T> vals = X;
sort(ALL(vals));
vals.erase(unique(ALL(vals)), vals.end());
rep(i, SZ(X))
X[i] = lower_bound(ALL(vals), X[i]) - vals.begin();
return vals;
}
v<pint> prime_factorize(int N) {
v<pint> res;
for (int i = 2; i * i <= N; i++) {
if (N % i != 0) continue;
int ex = 0;
while (N % i == 0) {
++ex;
N /= i;
}
res.push_back({ i, ex });
}
if (N != 1) res.push_back({ N, 1 });
return res;
}
struct Eratosthenes {
v<bool> isprime;
v<int> minfactor;
Eratosthenes(int N) : isprime(N + 1, true),
minfactor(N + 1, -1) {
isprime[0] = false;
isprime[1] = false;
minfactor[1] = 1;
for (int p = 2; p <= N; ++p) {
if (!isprime[p]) continue;
minfactor[p] = p;
for (int q = p * 2; q <= N; q += p) {
isprime[q] = false;
if (minfactor[q] == -1) minfactor[q] = p;
}
}
}
v<pint> factorize(int n) {
v<pint> res;
while (n > 1) {
int p = minfactor[n];
int exp = 0;
while (minfactor[n] == p) {
n /= p;
++exp;
}
res.emplace_back(p, exp);
}
return res;
}
};
int number_of_divisors(v<pint> p) {
int ans = 1;
for (pint x : p) {
ans *= x.second + 1;
}
return ans;
}
int sum_of_divisors(v<pint> p) {
int ans = 1;
for (pint x : p) {
}
return ans;
}
//constexpr int MOD = 1000000007;
//constexpr int MOD = 998244353;
//using mint = modint1000000007;
//using mint = modint998244353;
//using mint = static_modint<1000003>;
#line 2 "prime/fast-factorize.hpp"
#line 2 "inner/inner_math.hpp"
namespace inner {
using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;
template <typename T>
T gcd(T a, T b) {
while (b) swap(a %= b, b);
return a;
}
template <typename T>
T inv(T a, T p) {
T b = p, x = 1, y = 0;
while (a) {
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
assert(b == 1);
return y < 0 ? y + p : y;
}
template <typename T, typename U>
T modpow(T a, U n, T p) {
T ret = 1 % p;
for (; n; n >>= 1, a = U(a) * a % p)
if (n & 1) ret = U(ret) * a % p;
return ret;
}
} // namespace inner
#line 2 "misc/rng.hpp"
namespace my_rand {
using i64 = long long;
using u64 = unsigned long long;
// [0, 2^64 - 1)
u64 rng() {
static u64 _x =
u64(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count()) *
10150724397891781847ULL;
_x ^= _x << 7;
return _x ^= _x >> 9;
}
// [l, r]
i64 rng(i64 l, i64 r) {
assert(l <= r);
return l + rng() % (r - l + 1);
}
// [l, r)
i64 randint(i64 l, i64 r) {
assert(l < r);
return l + rng() % (r - l);
}
// choose n numbers from [l, r) without overlapping
vector<i64> randset(i64 l, i64 r, i64 n) {
assert(l <= r && n <= r - l);
unordered_set<i64> s;
for (i64 i = n; i; --i) {
i64 m = randint(l, r + 1 - i);
if (s.find(m) != s.end()) m = r - i;
s.insert(m);
}
vector<i64> ret;
for (auto& x : s) ret.push_back(x);
return ret;
}
// [0.0, 1.0)
double rnd() { return rng() * 5.42101086242752217004e-20; }
template <typename T>
void randshf(vector<T>& v) {
int n = v.size();
for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);
}
} // namespace my_rand
using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
#line 2 "modint/arbitrary-prime-modint.hpp"
struct ArbitraryLazyMontgomeryModInt {
using mint = ArbitraryLazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static u32 mod;
static u32 r;
static u32 n2;
static u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static void set_mod(u32 m) {
assert(m < (1 << 30));
assert((m & 1) == 1);
mod = m;
n2 = -u64(m) % m;
r = get_r();
assert(r * mod == 1);
}
u32 a;
ArbitraryLazyMontgomeryModInt() : a(0) {}
ArbitraryLazyMontgomeryModInt(const int64_t& b)
: a(reduce(u64(b% mod + mod)* n2)) {};
static u32 reduce(const u64& b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
mint& operator+=(const mint& b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint& b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint& b) {
a = reduce(u64(a) * b.a);
return *this;
}
mint& operator/=(const mint& b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint& b) const { return mint(*this) += b; }
mint operator-(const mint& b) const { return mint(*this) -= b; }
mint operator*(const mint& b) const { return mint(*this) *= b; }
mint operator/(const mint& b) const { return mint(*this) /= b; }
bool operator==(const mint& b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint& b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint() - mint(*this); }
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
int64_t t;
is >> t;
b = ArbitraryLazyMontgomeryModInt(t);
return (is);
}
mint inverse() const { return pow(mod - 2); }
u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static u32 get_mod() { return mod; }
};
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2;
#line 2 "modint/modint-montgomery64.hpp"
struct montgomery64 {
using mint = montgomery64;
using i64 = int64_t;
using u64 = uint64_t;
using u128 = __uint128_t;
static u64 mod;
static u64 r;
static u64 n2;
static u64 get_r() {
u64 ret = mod;
for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret;
return ret;
}
static void set_mod(u64 m) {
assert(m < (1LL << 62));
assert((m & 1) == 1);
mod = m;
n2 = -u128(m) % m;
r = get_r();
assert(r * mod == 1);
}
u64 a;
montgomery64() : a(0) {}
montgomery64(const int64_t& b) : a(reduce((u128(b) + mod)* n2)) {};
static u64 reduce(const u128& b) {
return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
}
mint& operator+=(const mint& b) {
if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint& b) {
if (i64(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint& b) {
a = reduce(u128(a) * b.a);
return *this;
}
mint& operator/=(const mint& b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint& b) const { return mint(*this) += b; }
mint operator-(const mint& b) const { return mint(*this) -= b; }
mint operator*(const mint& b) const { return mint(*this) *= b; }
mint operator/(const mint& b) const { return mint(*this) /= b; }
bool operator==(const mint& b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint& b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint() - mint(*this); }
mint pow(u128 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
int64_t t;
is >> t;
b = montgomery64(t);
return (is);
}
mint inverse() const { return pow(mod - 2); }
u64 get() const {
u64 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static u64 get_mod() { return mod; }
};
typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2;
#line 7 "prime/fast-factorize.hpp"
namespace fast_factorize {
using u64 = uint64_t;
template <typename mint>
bool miller_rabin(u64 n, vector<u64> as) {
if (mint::get_mod() != n) mint::set_mod(n);
u64 d = n - 1;
while (~d & 1) d >>= 1;
mint e{ 1 }, rev{ int64_t(n - 1) };
for (u64 a : as) {
if (n <= a) break;
u64 t = d;
mint y = mint(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(u64 n) {
if (~n & 1) return n == 2;
if (n <= 1) return false;
if (n < (1LL << 30))
return miller_rabin<ArbitraryLazyMontgomeryModInt>(n, { 2, 7, 61 });
else
return miller_rabin<montgomery64>(
n, { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 });
}
template <typename mint, typename T>
T pollard_rho(T n) {
if (~n & 1) return 2;
if (is_prime(n)) return n;
if (mint::get_mod() != n) mint::set_mod(n);
mint R, one = 1;
auto f = [&](mint x) { return x * x + R; };
auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
while (1) {
mint x, y, ys, q = one;
R = rnd_(), y = rnd_();
T g = 1;
constexpr int m = 128;
for (int r = 1; g == 1; r <<= 1) {
x = y;
for (int i = 0; i < r; ++i) y = f(y);
for (int k = 0; g == 1 && k < r; k += m) {
ys = y;
for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
g = inner::gcd<T>(q.get(), n);
}
}
if (g == n) do
g = inner::gcd<T>((x - (ys = f(ys))).get(), n);
while (g == 1);
if (g != n) return g;
}
exit(1);
}
using i64 = long long;
vector<i64> inner_factorize(u64 n) {
if (n <= 1) return {};
u64 p;
if (n <= (1LL << 30))
p = pollard_rho<ArbitraryLazyMontgomeryModInt, uint32_t>(n);
else
p = pollard_rho<montgomery64, uint64_t>(n);
if (p == n) return { i64(p) };
auto l = inner_factorize(p);
auto r = inner_factorize(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
vector<i64> factorize(u64 n) {
auto ret = inner_factorize(n);
sort(begin(ret), end(ret));
return ret;
}
map<i64, i64> factor_count(u64 n) {
map<i64, i64> mp;
for (auto& x : factorize(n)) mp[x]++;
return mp;
}
vector<i64> divisors(u64 n) {
if (n == 0) return {};
vector<pair<i64, i64>> v;
for (auto& p : factorize(n)) {
if (v.empty() || v.back().first != p) {
v.emplace_back(p, 1);
}
else {
v.back().second++;
}
}
vector<i64> ret;
auto f = [&](auto rc, int i, i64 x) -> void {
if (i == (int)v.size()) {
ret.push_back(x);
return;
}
for (int j = v[i].second;; --j) {
rc(rc, i + 1, x);
if (j == 0) break;
x *= v[i].first;
}
};
f(f, 0, 1);
sort(begin(ret), end(ret));
return ret;
}
} // namespace fast_factorize
using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;
using fast_factorize::is_prime;
/**
* @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
* @docs docs/prime/fast-factorize.md
*/
void solve() {
int N = ini();
auto p = factor_count(N);
int a = 1, b = 1;
for (auto x : p) {
if (x.second % 2 == 1)a *= x.first;
b *= ipow(x.first, x.second / 2);
}
cout << b << " " << a;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(14);
//cout << setfill('0') << right << setw(4)<<
solve();
}
UMRgurashi