結果

問題 No.1100 Boxes
ユーザー apricity
提出日時 2023-04-07 21:58:55
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 20,194 bytes
コンパイル時間 3,861 ms
コンパイル使用メモリ 161,792 KB
最終ジャッジ日時 2025-02-12 01:19:06
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In function 'FPS<mint> log(const FPS<mint>&, int)':
main.cpp:553:19: error: expected 'auto' or 'decltype(auto)' after 'integral'
  553 |         FPS res = integral(diff(f) * inv(f, deg));
      |                   ^~~~~~~~
main.cpp:553:19: error: 'auto(x)' cannot be constrained
  553 |         FPS res = integral(diff(f) * inv(f, deg));
      |                   ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<utility>
#include<tuple>
#include<cstdint>
#include<cstdio>
#include<iomanip>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<deque>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
#include<cctype>
#include<chrono>
#include<random>
#include<cassert>
#include<cstddef>
#include<iterator>
#include<string_view>
#include<type_traits>
#ifdef LOCAL
# include "debug_print.hpp"
# define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
# define debug(...) (static_cast<void>(0))
#endif
using namespace std;
#define rep(i,n) for(int i=0; i<(n); i++)
#define rrep(i,n) for(int i=(n)-1; i>=0; i--)
#define FOR(i,a,b) for(int i=(a); i<(b); i++)
#define RFOR(i,a,b) for(int i=(b-1); i>=(a); i--)
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
#define pb push_back
using ll = long long;
using D = double;
using LD = long double;
using P = pair<int, int>;
template<typename T> using PQ = priority_queue<T,vector<T>>;
template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
void yesno(bool flag) {cout << (flag?"Yes":"No") << "\n";}
template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template<typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
void in() {}
template<typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template<typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
void outr() {}
template<typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
cout << t;
outr(u...);
}
// modint
template<int MOD> struct Fp {
long long val;
constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
if (val < 0) val += MOD;
}
constexpr int getmod() const { return MOD; }
constexpr Fp operator - () const noexcept {
return val ? MOD - val : 0;
}
constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp& r) noexcept {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp& r) noexcept {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp& r) noexcept {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr bool operator == (const Fp& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp& r) const noexcept {
return this->val != r.val;
}
friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
return os << x.val;
}
friend constexpr Fp<MOD> modpow(const Fp<MOD>& r, long long n) noexcept {
if (n == 0) return 1;
if (n < 0) return modpow(modinv(r), -n);
auto t = modpow(r, n / 2);
t = t * t;
if (n & 1) t = t * r;
return t;
}
friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
return Fp<MOD>(u);
}
};
namespace NTT {
long long modpow(long long a, long long n, int mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, int mod) {
long long b = mod, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
u %= mod;
if (u < 0) u += mod;
return u;
}
int calc_primitive_root(int mod) {
if (mod == 2) return 1;
if (mod == 167772161) return 3;
if (mod == 469762049) return 3;
if (mod == 754974721) return 11;
if (mod == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
long long x = (mod - 1) / 2;
while (x % 2 == 0) x /= 2;
for (long long i = 3; i * i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) x /= i;
}
}
if (x > 1) divs[cnt++] = x;
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
int get_fft_size(int N, int M) {
int size_a = 1, size_b = 1;
while (size_a < N) size_a <<= 1;
while (size_b < M) size_b <<= 1;
return max(size_a, size_b) << 1;
}
// number-theoretic transform
template<class mint> void trans(vector<mint>& v, bool inv = false) {
if (v.empty()) return;
int N = (int)v.size();
int MOD = v[0].getmod();
int PR = calc_primitive_root(MOD);
static bool first = true;
static vector<long long> vbw(30), vibw(30);
if (first) {
first = false;
for (int k = 0; k < 30; ++k) {
vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);
vibw[k] = modinv(vbw[k], MOD);
}
}
for (int i = 0, j = 1; j < N - 1; j++) {
for (int k = N >> 1; k > (i ^= k); k >>= 1);
if (i > j) swap(v[i], v[j]);
}
for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {
long long bw = vbw[k];
if (inv) bw = vibw[k];
for (int i = 0; i < N; i += t) {
mint w = 1;
for (int j = 0; j < t/2; ++j) {
int j1 = i + j, j2 = i + j + t/2;
mint c1 = v[j1], c2 = v[j2] * w;
v[j1] = c1 + c2;
v[j2] = c1 - c2;
w *= bw;
}
}
}
if (inv) {
long long invN = modinv(N, MOD);
for (int i = 0; i < N; ++i) v[i] = v[i] * invN;
}
}
// for garner
static constexpr int MOD0 = 754974721;
static constexpr int MOD1 = 167772161;
static constexpr int MOD2 = 469762049;
using mint0 = Fp<MOD0>;
using mint1 = Fp<MOD1>;
using mint2 = Fp<MOD2>;
static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);
static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);
static const mint2 imod01 = 187290749; // imod1 / MOD0;
// small case (T = mint, long long)
template<class T> vector<T> naive_mul
(const vector<T>& A, const vector<T>& B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
vector<T> res(N + M - 1);
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
res[i + j] += A[i] * B[j];
return res;
}
// mint
template<class mint> vector<mint> mul
(const vector<mint>& A, const vector<mint>& B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
if (min(N, M) < 30) return naive_mul(A, B);
int MOD = A[0].getmod();
int size_fft = get_fft_size(N, M);
if (MOD == 998244353) {
vector<mint> a(size_fft), b(size_fft), c(size_fft);
for (int i = 0; i < N; ++i) a[i] = A[i];
for (int i = 0; i < M; ++i) b[i] = B[i];
trans(a), trans(b);
vector<mint> res(size_fft);
for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];
trans(res, true);
res.resize(N + M - 1);
return res;
}
vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
for (int i = 0; i < N; ++i)
a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;
for (int i = 0; i < M; ++i)
b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;
trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
for (int i = 0; i < size_fft; ++i) {
c0[i] = a0[i] * b0[i];
c1[i] = a1[i] * b1[i];
c2[i] = a2[i] * b2[i];
}
trans(c0, true), trans(c1, true), trans(c2, true);
static const mint mod0 = MOD0, mod01 = mod0 * MOD1;
vector<mint> res(N + M - 1);
for (int i = 0; i < N + M - 1; ++i) {
int y0 = c0[i].val;
int y1 = (imod0 * (c1[i] - y0)).val;
int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
res[i] = mod01 * y2 + mod0 * y1 + y0;
}
return res;
}
// long long
vector<long long> mul_ll
(const vector<long long>& A, const vector<long long>& B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
if (min(N, M) < 30) return naive_mul(A, B);
int size_fft = get_fft_size(N, M);
vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
for (int i = 0; i < N; ++i)
a0[i] = A[i], a1[i] = A[i], a2[i] = A[i];
for (int i = 0; i < M; ++i)
b0[i] = B[i], b1[i] = B[i], b2[i] = B[i];
trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
for (int i = 0; i < size_fft; ++i) {
c0[i] = a0[i] * b0[i];
c1[i] = a1[i] * b1[i];
c2[i] = a2[i] * b2[i];
}
trans(c0, true), trans(c1, true), trans(c2, true);
static const long long mod0 = MOD0, mod01 = mod0 * MOD1;
vector<long long> res(N + M - 1);
for (int i = 0; i < N + M - 1; ++i) {
int y0 = c0[i].val;
int y1 = (imod0 * (c1[i] - y0)).val;
int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
res[i] = mod01 * y2 + mod0 * y1 + y0;
}
return res;
}
};
// Binomial Coefficient
template<class T> struct BiCoef {
vector<T> fact_, inv_, finv_;
constexpr BiCoef() {}
constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
init(n);
}
constexpr void init(int n) noexcept {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
int MOD = fact_[0].getmod();
for(int i = 2; i < n; i++){
fact_[i] = fact_[i-1] * i;
inv_[i] = -inv_[MOD%i] * (MOD/i);
finv_[i] = finv_[i-1] * inv_[i];
}
}
constexpr T com(int n, int k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n-k];
}
constexpr T fact(int n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
constexpr T inv(int n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
constexpr T finv(int n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
// Formal Power Series
template <typename mint> struct FPS : vector<mint> {
using vector<mint>::vector;
// constructor
FPS(const vector<mint>& r) : vector<mint>(r) {}
// core operator
inline FPS pre(int siz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), siz));
}
inline FPS rev() const {
FPS res = *this;
reverse(begin(res), end(res));
return res;
}
inline FPS& normalize() {
while (!this->empty() && this->back() == 0) this->pop_back();
return *this;
}
// basic operator
inline FPS operator - () const noexcept {
FPS res = (*this);
for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
return res;
}
inline FPS operator + (const mint& v) const { return FPS(*this) += v; }
inline FPS operator + (const FPS& r) const { return FPS(*this) += r; }
inline FPS operator - (const mint& v) const { return FPS(*this) -= v; }
inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; }
inline FPS operator * (const mint& v) const { return FPS(*this) *= v; }
inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; }
inline FPS operator / (const mint& v) const { return FPS(*this) /= v; }
inline FPS operator << (int x) const { return FPS(*this) <<= x; }
inline FPS operator >> (int x) const { return FPS(*this) >>= x; }
inline FPS& operator += (const mint& v) {
if (this->empty()) this->resize(1);
(*this)[0] += v;
return *this;
}
inline FPS& operator += (const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
return this->normalize();
}
inline FPS& operator -= (const mint& v) {
if (this->empty()) this->resize(1);
(*this)[0] -= v;
return *this;
}
inline FPS& operator -= (const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
return this->normalize();
}
inline FPS& operator *= (const mint& v) {
for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
return *this;
}
inline FPS& operator *= (const FPS& r) {
return *this = NTT::mul((*this), r);
}
inline FPS& operator /= (const mint& v) {
assert(v != 0);
mint iv = modinv(v);
for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
return *this;
}
inline FPS& operator <<= (int x) {
FPS res(x, 0);
res.insert(res.end(), begin(*this), end(*this));
return *this = res;
}
inline FPS& operator >>= (int x) {
FPS res;
res.insert(res.end(), begin(*this) + x, end(*this));
return *this = res;
}
inline mint eval(const mint& v){
mint res = 0;
for (int i = (int)this->size()-1; i >= 0; --i) {
res *= v;
res += (*this)[i];
}
return res;
}
inline friend FPS gcd(const FPS& f, const FPS& g) {
if (g.empty()) return f;
return gcd(g, f % g);
}
// advanced operation
// df/dx
inline friend FPS diff(const FPS& f) {
int n = (int)f.size();
FPS res(n-1);
for (int i = 1; i < n; ++i) res[i-1] = f[i] * i;
return res;
}
// \int f dx
inline friend FPS integral(const FPS& f) {
int n = (int)f.size();
FPS res(n+1, 0);
for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1);
return res;
}
// inv(f), f[0] must not be 0
inline friend FPS inv(const FPS& f, int deg) {
assert(f[0] != 0);
if (deg < 0) deg = (int)f.size();
FPS res({mint(1) / f[0]});
for (int i = 1; i < deg; i <<= 1) {
res = (res + res - res * res * f.pre(i << 1)).pre(i << 1);
}
res.resize(deg);
return res;
}
inline friend FPS inv(const FPS& f) {
return inv(f, f.size());
}
// division, r must be normalized (r.back() must not be 0)
inline FPS& operator /= (const FPS& r) {
assert(!r.empty());
assert(r.back() != 0);
this->normalize();
if (this->size() < r.size()) {
this->clear();
return *this;
}
int need = (int)this->size() - (int)r.size() + 1;
*this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev();
return *this;
}
inline FPS& operator %= (const FPS &r) {
assert(!r.empty());
assert(r.back() != 0);
this->normalize();
FPS q = (*this) / r;
return *this -= q * r;
}
inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; }
inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; }
// log(f) = \int f'/f dx, f[0] must be 1
inline friend FPS log(const FPS& f, int deg) {
assert(f[0] == 1);
FPS res = integral(diff(f) * inv(f, deg));
res.resize(deg);
return res;
}
inline friend FPS log(const FPS& f) {
return log(f, f.size());
}
// exp(f), f[0] must be 0
inline friend FPS exp(const FPS& f, int deg) {
assert(f[0] == 0);
FPS res(1, 1);
for (int i = 1; i < deg; i <<= 1) {
res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1);
}
res.resize(deg);
return res;
}
inline friend FPS exp(const FPS& f) {
return exp(f, f.size());
}
// pow(f) = exp(e * log f)
inline friend FPS pow(const FPS& f, long long e, int deg) {
long long i = 0;
while (i < (int)f.size() && f[i] == 0) ++i;
if (i == (int)f.size()) return FPS(deg, 0);
if (i * e >= deg) return FPS(deg, 0);
mint k = f[i];
FPS res = exp(log((f >> i) / k, deg) * e, deg) * modpow(k, e) << (e * i);
res.resize(deg);
return res;
}
inline friend FPS pow(const FPS& f, long long e) {
return pow(f, e, f.size());
}
// sqrt(f), f[0] must be 1
inline friend FPS sqrt_base(const FPS& f, int deg) {
assert(f[0] == 1);
mint inv2 = mint(1) / 2;
FPS res(1, 1);
for (int i = 1; i < deg; i <<= 1) {
res = (res + f.pre(i << 1) * inv(res, i << 1)).pre(i << 1);
for (mint& x : res) x *= inv2;
}
res.resize(deg);
return res;
}
inline friend FPS sqrt_base(const FPS& f) {
return sqrt_base(f, f.size());
}
};
const int MOD = 998244353;
using mint = Fp<MOD>;
BiCoef<mint> bc;
using fps = FPS<mint>;
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int n,k; in(n,k);
bc.init(k+1);
fps f(k+1),g(k+1);
rep(i,k+1){
if(i&1) f[i] = bc.finv(i);
else g[i] = bc.finv(i);
}
fps ff = f*f, fg = f*g;
mint ans = 0;
rep(t,k+1){
mint tmp = modpow((mint)t,n) * bc.finv(t) * (t&1 ? -1:1);
if((k-t)&1) ans += tmp * fg[k-t];
else ans += tmp * ff[k-t];
}
ans *= bc.fact(k);
if(!(k&1)) ans *= -1;
out(ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0