結果
問題 | No.2265 Xor Range Substring Sum Query |
ユーザー | NyaanNyaan |
提出日時 | 2023-04-07 22:04:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3,077 ms / 5,000 ms |
コード長 | 17,272 bytes |
コンパイル時間 | 2,890 ms |
コンパイル使用メモリ | 258,952 KB |
実行使用メモリ | 6,880 KB |
最終ジャッジ日時 | 2024-10-02 19:34:32 |
合計ジャッジ時間 | 25,178 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 8 ms
6,816 KB |
testcase_01 | AC | 8 ms
6,820 KB |
testcase_02 | AC | 9 ms
6,816 KB |
testcase_03 | AC | 9 ms
6,816 KB |
testcase_04 | AC | 630 ms
6,820 KB |
testcase_05 | AC | 630 ms
6,880 KB |
testcase_06 | AC | 619 ms
6,880 KB |
testcase_07 | AC | 620 ms
6,820 KB |
testcase_08 | AC | 619 ms
6,816 KB |
testcase_09 | AC | 1,637 ms
6,876 KB |
testcase_10 | AC | 1,613 ms
6,824 KB |
testcase_11 | AC | 1,594 ms
6,820 KB |
testcase_12 | AC | 1,618 ms
6,880 KB |
testcase_13 | AC | 1,604 ms
6,816 KB |
testcase_14 | AC | 140 ms
6,820 KB |
testcase_15 | AC | 139 ms
6,824 KB |
testcase_16 | AC | 144 ms
6,816 KB |
testcase_17 | AC | 141 ms
6,820 KB |
testcase_18 | AC | 1,093 ms
6,816 KB |
testcase_19 | AC | 1,094 ms
6,820 KB |
testcase_20 | AC | 3,077 ms
6,816 KB |
testcase_21 | AC | 3,070 ms
6,820 KB |
testcase_22 | AC | 333 ms
6,820 KB |
testcase_23 | AC | 329 ms
6,816 KB |
ソースコード
/** * date : 2023-04-07 22:04:37 */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template <typename S> P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template <typename S> P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> inline T Max(const vector<T> &v) { return *max_element(begin(v), end(v)); } template <typename T> inline T Min(const vector<T> &v) { return *min_element(begin(v), end(v)); } template <typename T> inline long long Sum(const vector<T> &v) { return accumulate(begin(v), end(v), 0LL); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N,F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<int> mkinv(vector<T> &v) { int max_val = *max_element(begin(v), end(v)); vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector<int> mkiota(int n) { vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret; } template <typename T> T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template <typename T> bool nxp(vector<T> &v) { return next_permutation(begin(v), end(v)); } template <typename T> using minpq = priority_queue<T, vector<T>, greater<T>>; } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template <typename T, class... U> void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #else #define trc(...) (void(0)) #endif #ifdef NyaanLocal #define trc2(...) (void(0)) #else #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // template <typename MERGE, typename block, int B> struct SquareRootDecomposition { int N; vector<block> sq; MERGE merge; typename block::T UNIT; SquareRootDecomposition(int N_, MERGE merge_, typename block::T UNIT_) : N(N_), sq(N / B + 1), merge(merge_), UNIT(UNIT_) { for(int i = 0; i < (int)sq.size(); i++) sq[i].init(i); } void update(int l, int r, typename block::S x) { if (l / B == r / B) { sq[l / B].update_part(l % B, r % B, x); } else { sq[l / B].update_part(l % B, B, x); for (int i = l / B + 1; i < r / B; i++) sq[i].update_all(x); sq[r / B].update_part(0, r % B, x); } } typename block::T query(int l, int r) { if (l / B == r / B) return sq[l / B].query_part(l % B, r % B); typename block::T ret = UNIT; ret = merge(ret, sq[l / B].query_part(l % B, B)); for (int i = l / B + 1; i < r / B; i++) ret = merge(ret, sq[i].query_all()); ret = merge(ret, sq[r / B].query_part(0, r % B)); return ret; } }; /** * @brief 平方分割 * @docs docs/data-structure/sqrt-dec.md */ // template <typename mint> struct Affine { mint a, b; constexpr Affine() : a(1), b(0) {} constexpr Affine(mint _a, mint _b) : a(_a), b(_b) {} mint operator()(mint x) { return a * x + b; } // R(L(x)) friend Affine operator*(const Affine& l, const Affine& r) { return Affine(l.a * r.a, l.b * r.a + r.b); } bool operator==(const Affine& r) const { return a == r.a && b == r.b; } bool operator!=(const Affine& r) const { return a != r.a || b != r.b; } friend ostream& operator<<(ostream& os, const Affine& r) { os << "( " << r.a << ", " << r.b << " )"; return os; } }; /** * @brief アフィン変換 */ template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template <typename T> struct Binomial { vector<T> f, g, h; Binomial(int MAX = 0) { assert(T::get_mod() != 0 && "Binomial<mint>()"); f.resize(1, T{1}); g.resize(1, T{1}); h.resize(1, T{1}); while (MAX >= (int)f.size()) extend(); } void extend() { int n = f.size(); int m = n * 2; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template <typename I> T multinomial(const vector<I>& r) { static_assert(is_integral<I>::value == true); int n = 0; for (auto& x : r) { if (x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template <typename I> T operator()(const vector<I>& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } // [x^r] 1 / (1-x)^n T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; // using namespace Nyaan; using mint = LazyMontgomeryModInt<998244353>; // using mint = LazyMontgomeryModInt<1000000007>; using vm = vector<mint>; using vvm = vector<vm>; Binomial<mint> C; using namespace Nyaan; mint coeff = mint{11} / 2; constexpr int B = 64; using A = Affine<mint>; int D[PW(18) + 300]; int qnum = 0; A memo[2 * B][B]; int clen[2 * B]; struct block { // S 作用素の型 T 要素の型 using S = int; using T = A; int i; array<T, B> t; block() {} // i ... 何個目のブロックか // i * B + j ... (jをブロック内のidxとして)全体でのidx int idx(int j) const { return i * B + j; } // 変数とブロックの初期化を忘れない! void init(int _) { i = _; build(); } void build() { rep(x, B) { clen[B + x] = 1; memo[B + x][0] = T{coeff, D[idx(x)]}; } for (int x = B - 1; x; x--) { int c = clen[x * 2]; clen[x] = c * 2; rep(y, c) { A f = memo[x * 2 + 0][y]; A g = memo[x * 2 + 1][y]; memo[x][y + c * 0] = f * g; memo[x][y + c * 1] = g * f; } } rep(x, B) t[x] = memo[1][x]; } void update_part(int l, int r, S x) { reg(y, l, r) D[idx(y)] = x; build(); } T query_all() { return t[qnum]; } }; void q() { inl(N); ins(S); rep(i, PW(N)) D[i] = S[i] - '0'; inl(Q); int MAX = PW(18) + 3; SquareRootDecomposition<nullptr_t, block, B> sq{MAX, nullptr, A{}}; while (Q--) { inl(cmd); if (cmd == 1) { inl(x, y); D[x] = y; sq.sq[x / B].build(); } else { inl(L, R, X); qnum = X & (B - 1); R++; ll len = R - L; ll fir = D[L ^ X]; L++; A l, r; while (L < R and L % B != 0) { l = l * A{coeff, D[L ^ X]}; L++; } while (L < R and R % B != 0) { R--; r = A{coeff, D[R ^ X]} * r; } while (L != R) { trc(sq.sq[(L ^ X) / B].query_all()); l = l * sq.sq[(L ^ X) / B].query_all(); L += B; } l = l * r; mint ans = l(fir) * mint{2}.pow(len - 1); out(ans); } } } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }