結果

問題 No.2264 Gear Coloring
ユーザー RubikunRubikun
提出日時 2023-04-07 22:08:44
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 104 ms / 2,000 ms
コード長 21,605 bytes
コンパイル時間 2,474 ms
コンパイル使用メモリ 217,092 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-02 19:37:52
合計ジャッジ時間 3,380 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 3 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 4 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 3 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 3 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 17 ms
5,248 KB
testcase_15 AC 3 ms
5,248 KB
testcase_16 AC 104 ms
5,248 KB
testcase_17 AC 3 ms
5,248 KB
testcase_18 AC 3 ms
5,248 KB
testcase_19 AC 7 ms
5,248 KB
testcase_20 AC 3 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:542:9: warning: #pragma once in main file
  542 | #pragma once
      |         ^~~~
main.cpp:595:9: warning: #pragma once in main file
  595 | #pragma once
      |         ^~~~
main.cpp:607:9: warning: #pragma once in main file
  607 | #pragma once
      |         ^~~~

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=300005,INF=1<<30;

//modintのみ

// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)

#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {
    
    namespace internal {
        
#ifndef _MSC_VER
        template <class T>
        using is_signed_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value ||
        std::is_same<T, __int128>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int128 =
        typename std::conditional<std::is_same<T, __uint128_t>::value ||
        std::is_same<T, unsigned __int128>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using make_unsigned_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value,
        __uint128_t,
        unsigned __int128>;
        
        template <class T>
        using is_integral = typename std::conditional<std::is_integral<T>::value ||
        is_signed_int128<T>::value ||
        is_unsigned_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                         std::is_signed<T>::value) ||
        is_signed_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int =
        typename std::conditional<(is_integral<T>::value &&
                                   std::is_unsigned<T>::value) ||
        is_unsigned_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using to_unsigned = typename std::conditional<
        is_signed_int128<T>::value,
        make_unsigned_int128<T>,
        typename std::conditional<std::is_signed<T>::value,
        std::make_unsigned<T>,
        std::common_type<T>>::type>::type;
        
#else
        
        template <class T> using is_integral = typename std::is_integral<T>;
        
        template <class T>
        using is_signed_int =
        typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int =
        typename std::conditional<is_integral<T>::value &&
        std::is_unsigned<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using to_unsigned = typename std::conditional<is_signed_int<T>::value,
        std::make_unsigned<T>,
        std::common_type<T>>::type;
        
#endif
        
        template <class T>
        using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
        
        template <class T>
        using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
        
        template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
        
    }  // namespace internal
    
}  // namespace atcoder

#include <utility>

namespace atcoder {
    
    namespace internal {
        
        constexpr long long safe_mod(long long x, long long m) {
            x %= m;
            if (x < 0) x += m;
            return x;
        }
        
        struct barrett {
            unsigned int _m;
            unsigned long long im;
            
            barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
            
            unsigned int umod() const { return _m; }
            
            unsigned int mul(unsigned int a, unsigned int b) const {
                
                unsigned long long z = a;
                z *= b;
#ifdef _MSC_VER
                unsigned long long x;
                _umul128(z, im, &x);
#else
                unsigned long long x =
                (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
                unsigned int v = (unsigned int)(z - x * _m);
                if (_m <= v) v += _m;
                return v;
            }
        };
        
        constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
            if (m == 1) return 0;
            unsigned int _m = (unsigned int)(m);
            unsigned long long r = 1;
            unsigned long long y = safe_mod(x, m);
            while (n) {
                if (n & 1) r = (r * y) % _m;
                y = (y * y) % _m;
                n >>= 1;
            }
            return r;
        }
        
        constexpr bool is_prime_constexpr(int n) {
            if (n <= 1) return false;
            if (n == 2 || n == 7 || n == 61) return true;
            if (n % 2 == 0) return false;
            long long d = n - 1;
            while (d % 2 == 0) d /= 2;
            for (long long a : {2, 7, 61}) {
                long long t = d;
                long long y = pow_mod_constexpr(a, t, n);
                while (t != n - 1 && y != 1 && y != n - 1) {
                    y = y * y % n;
                    t <<= 1;
                }
                if (y != n - 1 && t % 2 == 0) {
                    return false;
                }
            }
            return true;
        }
        template <int n> constexpr bool is_prime = is_prime_constexpr(n);
        
        constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
            a = safe_mod(a, b);
            if (a == 0) return {b, 0};
            
            long long s = b, t = a;
            long long m0 = 0, m1 = 1;
            
            while (t) {
                long long u = s / t;
                s -= t * u;
                m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
                
                
                auto tmp = s;
                s = t;
                t = tmp;
                tmp = m0;
                m0 = m1;
                m1 = tmp;
            }
            if (m0 < 0) m0 += b / s;
            return {s, m0};
        }
        
        constexpr int primitive_root_constexpr(int m) {
            if (m == 2) return 1;
            if (m == 167772161) return 3;
            if (m == 469762049) return 3;
            if (m == 754974721) return 11;
            if (m == 998244353) return 3;
            int divs[20] = {};
            divs[0] = 2;
            int cnt = 1;
            int x = (m - 1) / 2;
            while (x % 2 == 0) x /= 2;
            for (int i = 3; (long long)(i)*i <= x; i += 2) {
                if (x % i == 0) {
                    divs[cnt++] = i;
                    while (x % i == 0) {
                        x /= i;
                    }
                }
            }
            if (x > 1) {
                divs[cnt++] = x;
            }
            for (int g = 2;; g++) {
                bool ok = true;
                for (int i = 0; i < cnt; i++) {
                    if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                        ok = false;
                        break;
                    }
                }
                if (ok) return g;
            }
        }
        template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
        
    }  // namespace internal
    
}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {
    
    namespace internal {
        
        struct modint_base {};
        struct static_modint_base : modint_base {};
        
        template <class T> using is_modint = std::is_base_of<modint_base, T>;
        template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
        
    }  // namespace internal
    
    template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
    struct static_modint : internal::static_modint_base {
        using mint = static_modint;
        
    public:
        static constexpr int mod() { return m; }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }
        
        static_modint() : _v(0) {}
        template <class T, internal::is_signed_int_t<T>* = nullptr>
        static_modint(T v) {
            long long x = (long long)(v % (long long)(umod()));
            if (x < 0) x += umod();
            _v = (unsigned int)(x);
        }
        template <class T, internal::is_unsigned_int_t<T>* = nullptr>
        static_modint(T v) {
            _v = (unsigned int)(v % umod());
        }
        static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
        
        unsigned int val() const { return _v; }
        
        mint& operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }
        mint& operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }
        
        mint& operator+=(const mint& rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs) {
            _v -= rhs._v;
            if (_v >= umod()) _v += umod();
            return *this;
        }
        mint& operator*=(const mint& rhs) {
            unsigned long long z = _v;
            z *= rhs._v;
            _v = (unsigned int)(z % umod());
            return *this;
        }
        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
        
        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }
        
        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            if (prime) {
                assert(_v);
                return pow(umod() - 2);
            } else {
                auto eg = internal::inv_gcd(_v, m);
                assert(eg.first == 1);
                return eg.second;
            }
        }
        
        friend mint operator+(const mint& lhs, const mint& rhs) {
            return mint(lhs) += rhs;
        }
        friend mint operator-(const mint& lhs, const mint& rhs) {
            return mint(lhs) -= rhs;
        }
        friend mint operator*(const mint& lhs, const mint& rhs) {
            return mint(lhs) *= rhs;
        }
        friend mint operator/(const mint& lhs, const mint& rhs) {
            return mint(lhs) /= rhs;
        }
        friend bool operator==(const mint& lhs, const mint& rhs) {
            return lhs._v == rhs._v;
        }
        friend bool operator!=(const mint& lhs, const mint& rhs) {
            return lhs._v != rhs._v;
        }
        
    private:
        unsigned int _v;
        static constexpr unsigned int umod() { return m; }
        static constexpr bool prime = internal::is_prime<m>;
    };
    
    template <int id> struct dynamic_modint : internal::modint_base {
        using mint = dynamic_modint;
        
    public:
        static int mod() { return (int)(bt.umod()); }
        static void set_mod(int m) {
            assert(1 <= m);
            bt = internal::barrett(m);
        }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }
        
        dynamic_modint() : _v(0) {}
        template <class T, internal::is_signed_int_t<T>* = nullptr>
        dynamic_modint(T v) {
            long long x = (long long)(v % (long long)(mod()));
            if (x < 0) x += mod();
            _v = (unsigned int)(x);
        }
        template <class T, internal::is_unsigned_int_t<T>* = nullptr>
        dynamic_modint(T v) {
            _v = (unsigned int)(v % mod());
        }
        dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
        
        unsigned int val() const { return _v; }
        
        mint& operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }
        mint& operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }
        
        mint& operator+=(const mint& rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs) {
            _v += mod() - rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator*=(const mint& rhs) {
            _v = bt.mul(_v, rhs._v);
            return *this;
        }
        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
        
        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }
        
        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            auto eg = internal::inv_gcd(_v, mod());
            assert(eg.first == 1);
            return eg.second;
        }
        
        friend mint operator+(const mint& lhs, const mint& rhs) {
            return mint(lhs) += rhs;
        }
        friend mint operator-(const mint& lhs, const mint& rhs) {
            return mint(lhs) -= rhs;
        }
        friend mint operator*(const mint& lhs, const mint& rhs) {
            return mint(lhs) *= rhs;
        }
        friend mint operator/(const mint& lhs, const mint& rhs) {
            return mint(lhs) /= rhs;
        }
        friend bool operator==(const mint& lhs, const mint& rhs) {
            return lhs._v == rhs._v;
        }
        friend bool operator!=(const mint& lhs, const mint& rhs) {
            return lhs._v != rhs._v;
        }
        
    private:
        unsigned int _v;
        static internal::barrett bt;
        static unsigned int umod() { return bt.umod(); }
    };
    template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
    
    using modint998244353 = static_modint<998244353>;
    using modint1000000007 = static_modint<1000000007>;
    using modint = dynamic_modint<-1>;
    
    namespace internal {
        
        template <class T>
        using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
        
        template <class T>
        using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
        
        template <class> struct is_dynamic_modint : public std::false_type {};
        template <int id>
        struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
        
        template <class T>
        using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
        
    }  // namespace internal
    
}  // namespace atcoder

using mint=atcoder::modint998244353;

ll gcd(ll a,ll b){
    if(b==0) return a;
    return gcd(b,a%b);
}

//高速素因数分解

/**
 * Author: chilli, Ramchandra Apte, Noam527, Simon Lindholm
 * Date: 2019-04-24
 * License: CC0
 * Source: https://github.com/RamchandraApte/OmniTemplate/blob/master/modulo.hpp…
 * Description: Calculate $a\cdot b\bmod c$ (or $a^b \bmod c$) for $0 \le a, b \le c \le 7.2\cdot 10^{18}$.
 * Time: O(1) for \texttt{modmul}, O(\log b) for \texttt{modpow}
 * Status: stress-tested, proven correct
 * Details:
 * This runs ~2x faster than the naive (__int128_t)a * b % M.
 * A proof of correctness is in doc/modmul-proof.tex. An earlier version of the proof,
 * from when the code used a * b / (long double)M, is in doc/modmul-proof.md.
 * The proof assumes that long doubles are implemented as x87 80-bit floats; if they
 * are 64-bit, as on e.g. MSVC, the implementation is only valid for
 * $0 \le a, b \le c < 2^{52} \approx 4.5 \cdot 10^{15}$.
 */
#pragma once

typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(1.L / M * a * b);
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
    ull ans = 1;
    for (; e; b = modmul(b, b, mod), e /= 2)
        if (e & 1) ans = modmul(ans, b, mod);
    return ans;
}

/**
 * Author: chilli, SJTU, pajenegod
 * Date: 2020-03-04
 * License: CC0
 * Source: own
 * Description: Pollard-rho randomized factorization algorithm. Returns prime
 * factors of a number, in arbitrary order (e.g. 2299 -> \{11, 19, 11\}).
 * Time: $O(n^{1/4})$, less for numbers with small factors.
 * Status: stress-tested
 *
 * Details: This implementation uses the improvement described here
 * (https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm#Variants…), where
 * one can accumulate gcd calls by some factor (40 chosen here through
 * exhaustive testing). This improves performance by approximately 6-10x
 * depending on the inputs and speed of gcd. Benchmark found here:
 * (https://ideone.com/nGGD9T)
 *
 * GCD can be improved by a factor of 1.75x using Binary GCD
 * (https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/…).
 * However, with the gcd accumulation the bottleneck moves from the gcd calls
 * to the modmul. As GCD only constitutes ~12% of runtime, speeding it up
 * doesn't matter so much.
 *
 * This code can probably be sped up by using a faster mod mul - potentially
 * montgomery reduction on 128 bit integers.
 * Alternatively, one can use a quadratic sieve for an asymptotic improvement,
 * which starts being faster in practice around 1e13.
 *
 * Brent's cycle finding algorithm was tested, but doesn't reduce modmul calls
 * significantly.
 *
 * Subtle implementation notes:
 * - we operate on residues in [1, n]; modmul can be proven to work for those
 * - prd starts off as 2 to handle the case n = 4; it's harmless for other n
 *   since we're guaranteed that n > 2. (Pollard rho has problems with prime
 *   powers in general, but all larger ones happen to work.)
 * - t starts off as 30 to make the first gcd check come earlier, as an
 *   optimization for small numbers.
 */
#pragma once

/**
 * Author: chilli, c1729, Simon Lindholm
 * Date: 2019-03-28
 * License: CC0
 * Source: Wikipedia, https://miller-rabin.appspot.com
 * Description: Deterministic Miller-Rabin primality test.
 * Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.
 * Time: 7 times the complexity of $a^b \mod c$.
 * Status: Stress-tested
 */
#pragma once

bool isPrime(ull n) {
    if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
    ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
    s = __builtin_ctzll(n-1), d = n >> s;
    for (ull a : A) {   // ^ count trailing zeroes
        ull p = modpow(a%n, d, n), i = s;
        while (p != 1 && p != n - 1 && a % n && i--)
            p = modmul(p, p, n);
        if (p != n-1 && i != s) return 0;
    }
    return 1;
}

ull pollard(ull n) {
    auto f = [n](ull x) { return modmul(x, x, n) + 1; };
    ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
    while (t++ % 40 || __gcd(prd, n) == 1) {
        if (x == y) x = ++i, y = f(x);
        if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
        x = f(x), y = f(f(y));
    }
    return __gcd(prd, n);
}
vector<ull> factor(ull n) {
    if (n == 1) return {};
    if (isPrime(n)) return {n};
    ull x = pollard(n);
    auto l = factor(x), r = factor(n / x);
    l.insert(l.end(), all(r));
    return l;
}

int main(){
    
    std::ifstream in("text.txt");
    std::cin.rdbuf(in.rdbuf());
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    int N,M;cin>>N>>M;
    vector<ll> A(N);
    ll L=1;
    for(int i=0;i<N;i++){
        cin>>A[i];
        ll g=gcd(L,A[i]);
        L=L/g*A[i];
    }
    
    mint ans=0;
    
    vector<ll> yaku;
    for(ll x=1;x*x<=L;x++){
        if(L%x==0){
            yaku.push_back(x);
            if(x*x!=L) yaku.push_back(L/x);
        }
    }
    sort(all(yaku));
    
    vector<ll> prime;
    
    for(ll x:yaku) if(isPrime(x)) prime.push_back(x);
    
    auto meb=[&](ll x){
        ll res=x;
        for(ll p:prime){
            if(x%p==0){
                res/=p;
                res*=(p-1);
            }
        }
        return res;
    };
    
    for(ll g:yaku){
        ll cn=0;
        for(int i=0;i<N;i++){
            cn+=gcd(A[i],g);
        }
        //cout<<g<<" "<<cn<<" "<<meb(L/g)<<" "<<ans.val()<<endl;
        ans+=mint(M).pow(cn)*meb(L/g);
    }
    
    ans/=L;
    
    cout<<ans.val()<<endl;
    
}
0