結果

問題 No.2263 Perms
ユーザー kaikeykaikey
提出日時 2023-04-07 22:17:22
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 7,213 bytes
コンパイル時間 2,568 ms
コンパイル使用メモリ 219,876 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-10-02 19:46:34
合計ジャッジ時間 8,373 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 AC 2 ms
5,376 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 2 ms
5,376 KB
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 AC 2 ms
5,376 KB
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#include <chrono>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(30); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
	for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
	return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
	for (T& in : v) is >> in;
	return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
	if (b < 0) a *= -1, b *= -1;
	return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
	if (b < 0) a *= -1, b *= -1;
	return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
	F f;
	rec(F&& f_) : f(std::forward<F>(f_)) {}
	template <class... Args> auto operator()(Args &&... args) const {
		return f(*this, std::forward<Args>(args)...);
	}
};
//lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const long long MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18;
lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
	lint from, to;
	lint cost;
	Edge() {

	}
	Edge(lint u, lint v, lint c) {
		cost = c;
		from = u;
		to = v;
	}
	bool operator<(const Edge& e) const {
		return cost < e.cost;
	}
};
struct WeightedEdge {
	lint to;
	lint cost;
	WeightedEdge(lint v, lint c) {
		to = v;
		cost = c;
	}
	bool operator<(const WeightedEdge& e) const {
		return cost < e.cost;
	}
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<ld, ld> pld;
typedef pair<plint, plint> qlint;
typedef pair<plint, char> vstr;
typedef pair<lint, Vl> valv;
typedef pair<set<lint>, set<lint>> pset;

template<typename flow_t, typename cost_t>
struct Flow {
	const cost_t INF;
	struct edge {
		lint to;
		flow_t cap;
		cost_t cost;
		lint rev;
		bool isrev;
	};
	vector<vector<edge> > Graph;
	vector<cost_t> potential, min_cost;
	vector<lint> prevv, preve;
	vector<lint> level;
	vector<lint> iter;

	Flow(lint V) :Graph(V), INF(numeric_limits< cost_t >::max()) {}

	void add_edge(lint from, lint to, flow_t cap, cost_t cost = 0) {
		Graph[from].push_back({ to, cap, cost, SZ(Graph[to]), false });
		Graph[to].push_back({ from, 0, -cost, SZ(Graph[from]) - 1, true });
	}

	void bfs(lint s) {
		lint V = SZ(Graph);
		level.assign(V, -1);
		queue<lint> que;
		que.push(s);
		level[s] = 0;
		while (!que.empty()) {
			lint v = que.front(); que.pop();
			REP(i, SZ(Graph[v])) {
				edge& e = Graph[v][i];
				if (e.cap > 0 && level[e.to] < 0) {
					level[e.to] = level[v] + 1;
					que.push(e.to);
				}
			}
		}
	}

	flow_t dfs(lint v, lint t, flow_t f) {
		if (v == t) return f;
		for (lint& i = iter[v]; i < SZ(Graph[v]); i++) {
			edge& e = Graph[v][i];
			if (e.cap > 0 && level[v] < level[e.to]) {
				flow_t d = dfs(e.to, t, min(f, e.cap));
				if (d > 0) {
					e.cap -= d;
					Graph[e.to][e.rev].cap += d;
					return d;
				}
			}
		}
		return 0;
	}

	flow_t max_flow(lint s, lint t) {
		flow_t flow = 0;
		lint V = SZ(Graph);
		for (;;) {
			bfs(s);
			if (level[t] < 0) return flow;
			iter.assign(V, 0);
			flow_t f;
			while ((f = dfs(s, t, INF)) > 0) {
				flow += f;
			}
		}
	}

	lint min_cost_flow(lint s, lint t, lint f) {
		cost_t res = 0;
		lint V = SZ(Graph);

		potential.assign(V, 0);
		prevv.assign(V, -1);
		preve.assign(V, -1);

		while (f > 0) {
			priority_queue<pair<cost_t, lint>, vector<pair<cost_t, lint> >, greater<pair<cost_t, lint> > > que;
			min_cost.assign(V, INF);
			min_cost[s] = 0;
			que.push({ 0, s });
			while (!que.empty()) {
				pair<cost_t, lint> p = que.top(); que.pop();
				lint v = p.second;
				if (min_cost[v] < p.first) continue;
				REP(i, SZ(Graph[v])) {
					edge& e = Graph[v][i];
					cost_t nextCost = min_cost[v] + e.cost + potential[v] - potential[e.to];
					if (e.cap > 0 && min_cost[e.to] > nextCost) {
						min_cost[e.to] = nextCost;
						prevv[e.to] = v;
						preve[e.to] = i;
						que.push({ min_cost[e.to], e.to });
					}
				}
			}
			if (min_cost[t] == INF) {
				return -1;
			}
			REP(v, V) potential[v] += min_cost[v];

			flow_t addflow = f;
			for (lint v = t; v != s; v = prevv[v]) {
				addflow = min(addflow, Graph[prevv[v]][preve[v]].cap);
			}
			f -= addflow;
			res += addflow * potential[t];
			for (lint v = t; v != s; v = prevv[v]) {
				edge& e = Graph[prevv[v]][preve[v]];
				e.cap -= addflow;
				Graph[v][e.rev].cap += addflow;
			}
		}
		return res;
	}
};

int main() {
	lint N, M;
	cin >> N >> M;
	VVl arr(N, Vl(N));
	cin >> arr;
	bool flag = true;
	REP(i, N) {
		{
			lint sum = 0;
			REP(j, N) {
				sum += arr[i][j];
			}
			if (sum != M) flag = false;
		}
		{
			lint sum = 0;
			REP(j, N) {
				sum += arr[j][i];
			}
			if (sum != M) flag = false;
		}
	}

	if (!flag) cout << -1 << endk;
	else {
		REP(k, M) {
			Vl ans(N);
			lint s = N * 2, t = s + 1;
			Flow<lint, lint> g(t + 1);
			REP(i, N) {
				REP(j, N) {
					if (arr[i][j] > 0) {
						g.add_edge(i, N + j, 1);
					}
				}
				g.add_edge(s, i, 1);
				g.add_edge(N + i, t, 1);
			}

			cout << g.max_flow(s, t) << endk;
			for (int i = 0; i < g.Graph.size(); i++) {
				for (auto& e : g.Graph[i]) {
					if (e.isrev) continue;
					auto& rev_e = g.Graph[e.to][e.rev];
					if (i < N && e.to >= N && e.to < N * 2 && rev_e.cap == 1) {
						ans[i] = e.to + 1 - N;
						arr[i][e.to - N]--;
					}
				}
			}
			cout << ans << endk;
		}
	}
}
0