結果
問題 | No.2264 Gear Coloring |
ユーザー | Pachicobue |
提出日時 | 2023-04-07 22:58:33 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 46 ms / 2,000 ms |
コード長 | 30,178 bytes |
コンパイル時間 | 3,513 ms |
コンパイル使用メモリ | 251,792 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-02 20:17:16 |
合計ジャッジ時間 | 4,473 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 3 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 18 ms
5,248 KB |
testcase_15 | AC | 3 ms
5,248 KB |
testcase_16 | AC | 46 ms
5,248 KB |
testcase_17 | AC | 3 ms
5,248 KB |
testcase_18 | AC | 3 ms
5,248 KB |
testcase_19 | AC | 5 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using i32 = int; using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using f64 = double; using f80 = long double; using f128 = __float128; constexpr i32 operator"" _i32(u64 v) { return v; } constexpr u32 operator"" _u32(u64 v) { return v; } constexpr i64 operator"" _i64(u64 v) { return v; } constexpr u64 operator"" _u64(u64 v) { return v; } constexpr f64 operator"" _f64(f80 v) { return v; } constexpr f80 operator"" _f80(f80 v) { return v; } using Istream = std::istream; using Ostream = std::ostream; using Str = std::string; template<typename T> using Lt = std::less<T>; template<typename T> using Gt = std::greater<T>; template<int n> using BSet = std::bitset<n>; template<typename T1, typename T2> using Pair = std::pair<T1, T2>; template<typename... Ts> using Tup = std::tuple<Ts...>; template<typename T, int N> using Arr = std::array<T, N>; template<typename... Ts> using Deq = std::deque<Ts...>; template<typename... Ts> using Set = std::set<Ts...>; template<typename... Ts> using MSet = std::multiset<Ts...>; template<typename... Ts> using USet = std::unordered_set<Ts...>; template<typename... Ts> using UMSet = std::unordered_multiset<Ts...>; template<typename... Ts> using Map = std::map<Ts...>; template<typename... Ts> using MMap = std::multimap<Ts...>; template<typename... Ts> using UMap = std::unordered_map<Ts...>; template<typename... Ts> using UMMap = std::unordered_multimap<Ts...>; template<typename... Ts> using Vec = std::vector<Ts...>; template<typename... Ts> using Stack = std::stack<Ts...>; template<typename... Ts> using Queue = std::queue<Ts...>; template<typename T> using MaxHeap = std::priority_queue<T>; template<typename T> using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>; constexpr bool LOCAL = false; constexpr bool OJ = not LOCAL; template<typename T> static constexpr T OjLocal(T oj, T local) { return LOCAL ? local : oj; } template<typename T> constexpr T LIMMIN = std::numeric_limits<T>::min(); template<typename T> constexpr T LIMMAX = std::numeric_limits<T>::max(); template<typename T> constexpr T INF = (LIMMAX<T> - 1) / 2; template<typename T> constexpr T PI = T{3.141592653589793238462643383279502884}; template<typename T = u64> constexpr T TEN(int n) { return n == 0 ? T{1} : TEN<T>(n - 1) * T{10}; } template<typename T> constexpr bool chmin(T& a, const T& b) { return (a > b ? (a = b, true) : false); } template<typename T> constexpr bool chmax(T& a, const T& b) { return (a < b ? (a = b, true) : false); } template<typename T> constexpr T floorDiv(T x, T y) { assert(y != 0); if (y < 0) { x = -x, y = -y; } return x >= 0 ? x / y : (x - y + 1) / y; } template<typename T> constexpr T ceilDiv(T x, T y) { assert(y != 0); if (y < 0) { x = -x, y = -y; } return x >= 0 ? (x + y - 1) / y : x / y; } template<typename T, typename I> constexpr T powerMonoid(T v, I n, const T& e) { assert(n >= 0); if (n == 0) { return e; } return (n % 2 == 1 ? v * powerMonoid(v, n - 1, e) : powerMonoid(v * v, n / 2, e)); } template<typename T, typename I> constexpr T powerInt(T v, I n) { return powerMonoid(v, n, T{1}); } template<typename Vs, typename V> constexpr void fillAll(Vs& arr, const V& v) { if constexpr (std::is_convertible<V, Vs>::value) { arr = v; } else { for (auto& subarr : arr) { fillAll(subarr, v); } } } template<typename Vs> constexpr void sortAll(Vs& vs) { std::sort(std::begin(vs), std::end(vs)); } template<typename Vs, typename C> constexpr void sortAll(Vs& vs, C comp) { std::sort(std::begin(vs), std::end(vs), comp); } template<typename Vs> constexpr void reverseAll(Vs& vs) { std::reverse(std::begin(vs), std::end(vs)); } template<typename Vs> constexpr Vs reversed(const Vs& vs) { auto rvs = vs; reverseAll(rvs); return rvs; } template<typename V, typename Vs> constexpr V sumAll(const Vs& vs) { if constexpr (std::is_convertible<Vs, V>::value) { return static_cast<V>(vs); } else { V ans = 0; for (const auto& v : vs) { ans += sumAll<V>(v); } return ans; } } template<typename Vs> constexpr int minInd(const Vs& vs) { return std::min_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template<typename Vs> constexpr int maxInd(const Vs& vs) { return std::max_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template<typename Vs, typename V> constexpr int lbInd(const Vs& vs, const V& v) { return std::lower_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template<typename Vs, typename V> constexpr int ubInd(const Vs& vs, const V& v) { return std::upper_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template<typename Vs, typename V> constexpr void plusAll(Vs& vs, const V& v) { for (auto& v_ : vs) { v_ += v; } } template<typename Vs> constexpr void concat(Vs& vs1, const Vs& vs2) { std::copy(std::begin(vs2), std::end(vs2), std::back_inserter(vs1)); } template<typename Vs> constexpr void concatted(const Vs& vs1, const Vs& vs2) { auto vs = vs1; concat(vs, vs2); return vs; } template<typename T, typename F> constexpr Vec<T> genVec(int n, F gen) { Vec<T> ans; std::generate_n(std::back_inserter(ans), n, gen); return ans; } template<typename T = int> constexpr Vec<T> iotaVec(int n, T offset = 0) { Vec<T> ans(n); std::iota(std::begin(ans), std::end(ans), offset); return ans; } template<typename Vs> constexpr void rearrange(Vs& vs, const Vec<int>& is) { auto vs_ = vs; for (int i = 0; i < (int)is.size(); i++) { vs[i] = vs_[is[i]]; } } inline Vec<int> reversePerm(const Vec<int>& is) { auto ris = is; for (int i = 0; i < (int)is.size(); i++) { ris[is[i]] = i; } return ris; } inline Ostream& operator<<(Ostream& os, i128 v) { bool minus = false; if (v < 0) { minus = true, v = -v; } Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << (minus ? "-" : "") << ans; } inline Ostream& operator<<(Ostream& os, u128 v) { Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << ans; } constexpr int popCount(u64 v) { return v ? __builtin_popcountll(v) : 0; } constexpr int topBit(u64 v) { return v == 0 ? -1 : 63 - __builtin_clzll(v); } constexpr int lowBit(u64 v) { return v == 0 ? 64 : __builtin_ctzll(v); } constexpr int bitWidth(u64 v) { return topBit(v) + 1; } constexpr u64 bitCeil(u64 v) { return v ? (1_u64 << bitWidth(v - 1)) : 1_u64; } constexpr u64 bitFloor(u64 v) { return v ? (1_u64 << topBit(v)) : 0_u64; } constexpr bool hasSingleBit(u64 v) { return (v > 0) and ((v & (v - 1)) == 0); } constexpr bool isBitOn(u64 mask, int ind) { return (mask >> ind) & 1_u64; } constexpr bool isBitOff(u64 mask, int ind) { return not isBitOn(mask, ind); } constexpr u64 bitMask(int bitWidth) { return (bitWidth == 64 ? ~0_u64 : (1_u64 << bitWidth) - 1); } constexpr u64 bitMask(int start, int end) { return bitMask(end - start) << start; } template<typename F> struct Fix : F { constexpr Fix(F&& f) : F{std::forward<F>(f)} {} template<typename... Args> constexpr auto operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); } }; class irange { private: struct itr { constexpr itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {} constexpr bool operator!=(const itr& it) const { return m_cnt != it.m_cnt; } constexpr i64 operator*() { return m_cnt; } constexpr itr& operator++() { return m_cnt += m_step, *this; } i64 m_cnt, m_step; }; i64 m_start, m_end, m_step; public: static constexpr i64 cnt(i64 start, i64 end, i64 step) { if (step == 0) { return -1; } const i64 d = (step > 0 ? step : -step); const i64 l = (step > 0 ? start : end); const i64 r = (step > 0 ? end : start); i64 n = (r - l) / d + ((r - l) % d ? 1 : 0); if (l >= r) { n = 0; } return n; } constexpr irange(i64 start, i64 end, i64 step = 1) : m_start{start}, m_end{m_start + step * cnt(start, end, step)}, m_step{step} { assert(step != 0); } constexpr itr begin() const { return itr{m_start, m_step}; } constexpr itr end() const { return itr{m_end, m_step}; } }; constexpr irange rep(i64 end) { return irange(0, end, 1); } constexpr irange per(i64 rend) { return irange(rend - 1, -1, -1); } class Scanner { public: Scanner(Istream& is = std::cin) : m_is{is} { m_is.tie(nullptr)->sync_with_stdio(false); } template<typename T> T val() { T v; return m_is >> v, v; } template<typename T> T val(T offset) { return val<T>() - offset; } template<typename T> Vec<T> vec(int n) { return genVec<T>(n, [&]() { return val<T>(); }); } template<typename T> Vec<T> vec(int n, T offset) { return genVec<T>(n, [&]() { return val<T>(offset); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m) { return genVec<Vec<T>>(n, [&]() { return vec<T>(m); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m, const T offset) { return genVec<Vec<T>>(n, [&]() { return vec<T>(m, offset); }); } template<typename... Args> auto tup() { return Tup<Args...>{val<Args>()...}; } template<typename... Args> auto tup(const Args&... offsets) { return Tup<Args...>{val<Args>(offsets)...}; } private: Istream& m_is; }; inline Scanner in; class Printer { public: Printer(Ostream& os = std::cout) : m_os{os} { m_os << std::fixed << std::setprecision(15); } template<typename... Args> int operator()(const Args&... args) { return dump(args...), 0; } template<typename... Args> int ln(const Args&... args) { return dump(args...), m_os << '\n', 0; } template<typename... Args> int el(const Args&... args) { return dump(args...), m_os << std::endl, 0; } int YES(bool b = true) { return ln(b ? "YES" : "NO"); } int NO(bool b = true) { return YES(not b); } int Yes(bool b = true) { return ln(b ? "Yes" : "No"); } int No(bool b = true) { return Yes(not b); } private: template<typename T> void dump(const T& v) { m_os << v; } template<typename T> void dump(const Vec<T>& vs) { for (int i : rep(vs.size())) { m_os << (i ? " " : ""), dump(vs[i]); } } template<typename T> void dump(const Vec<Vec<T>>& vss) { for (int i : rep(vss.size())) { m_os << (i ? "\n" : ""), dump(vss[i]); } } template<typename T, typename... Ts> int dump(const T& v, const Ts&... args) { return dump(v), m_os << ' ', dump(args...), 0; } Ostream& m_os; }; inline Printer out; template<typename T, int n, int i = 0> auto ndVec(int const (&szs)[n], const T x = T{}) { if constexpr (i == n) { return x; } else { return std::vector(szs[i], ndVec<T, n, i + 1>(szs, x)); } } template<typename T, typename F> inline T binSearch(T ng, T ok, F check) { while (std::abs(ok - ng) > 1) { const T mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return ok; } template<typename T> constexpr Pair<T, T> extgcd(const T a, const T b) // [x,y] -> ax+by=gcd(a,b) { static_assert(std::is_signed_v<T>, "Signed integer is allowed."); assert(a != 0 or b != 0); if (a >= 0 and b >= 0) { if (a < b) { const auto [y, x] = extgcd(b, a); return {x, y}; } if (b == 0) { return {1, 0}; } const auto [x, y] = extgcd(b, a % b); return {y, x - (a / b) * y}; } else { auto [x, y] = extgcd(std::abs(a), std::abs(b)); if (a < 0) { x = -x; } if (b < 0) { y = -y; } return {x, y}; } } template<typename T> constexpr T inverse(const T a, const T mod) // ax=gcd(a,M) (mod M) { assert(a > 0 and mod > 0); auto [x, y] = extgcd(a, mod); if (x <= 0) { x += mod; } return x; } template<u32 mod_, u32 root_, u32 max2p_> class modint { template<typename U = u32&> static U modRef() { static u32 s_mod = 0; return s_mod; } template<typename U = u32&> static U rootRef() { static u32 s_root = 0; return s_root; } template<typename U = u32&> static U max2pRef() { static u32 s_max2p = 0; return s_max2p; } public: static_assert(mod_ <= LIMMAX<i32>, "mod(signed int size) only supported!"); static constexpr bool isDynamic() { return (mod_ == 0); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> mod() { return mod_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> mod() { return modRef(); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> root() { return root_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> root() { return rootRef(); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> max2p() { return max2p_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> max2p() { return max2pRef(); } template<typename U = u32> static void setMod(std::enable_if_t<mod_ == 0, U> m) { assert(1 <= m and m <= LIMMAX<i32>); modRef() = m; sinvRef() = {1, 1}; factRef() = {1, 1}; ifactRef() = {1, 1}; } template<typename U = u32> static void setRoot(std::enable_if_t<mod_ == 0, U> r) { rootRef() = r; } template<typename U = u32> static void setMax2p(std::enable_if_t<mod_ == 0, U> m) { max2pRef() = m; } constexpr modint() : m_val{0} {} constexpr modint(i64 v) : m_val{normll(v)} {} constexpr void setRaw(u32 v) { m_val = v; } constexpr modint operator-() const { return modint{0} - (*this); } constexpr modint& operator+=(const modint& m) { m_val = norm(m_val + m.val()); return *this; } constexpr modint& operator-=(const modint& m) { m_val = norm(m_val + mod() - m.val()); return *this; } constexpr modint& operator*=(const modint& m) { m_val = normll((i64)m_val * (i64)m.val() % (i64)mod()); return *this; } constexpr modint& operator/=(const modint& m) { return *this *= m.inv(); } constexpr modint operator+(const modint& m) const { auto v = *this; return v += m; } constexpr modint operator-(const modint& m) const { auto v = *this; return v -= m; } constexpr modint operator*(const modint& m) const { auto v = *this; return v *= m; } constexpr modint operator/(const modint& m) const { auto v = *this; return v /= m; } constexpr bool operator==(const modint& m) const { return m_val == m.val(); } constexpr bool operator!=(const modint& m) const { return not(*this == m); } friend Istream& operator>>(Istream& is, modint& m) { i64 v; return is >> v, m = v, is; } friend Ostream& operator<<(Ostream& os, const modint& m) { return os << m.val(); } constexpr u32 val() const { return m_val; } template<typename I> constexpr modint pow(I n) const { return powerInt(*this, n); } constexpr modint inv() const { return inverse<i32>(m_val, mod()); } static modint sinv(u32 n) { auto& is = sinvRef(); for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); } return is[n]; } static modint fact(u32 n) { auto& fs = factRef(); for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); } return fs[n]; } static modint ifact(u32 n) { auto& ifs = ifactRef(); for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); } return ifs[n]; } static modint perm(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k); } static modint comb(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k); } private: static Vec<modint>& sinvRef() { static Vec<modint> is{1, 1}; return is; } static Vec<modint>& factRef() { static Vec<modint> fs{1, 1}; return fs; } static Vec<modint>& ifactRef() { static Vec<modint> ifs{1, 1}; return ifs; } static constexpr u32 norm(u32 x) { return x < mod() ? x : x - mod(); } static constexpr u32 normll(i64 x) { return norm(u32(x % (i64)mod() + (i64)mod())); } u32 m_val; }; using modint_1000000007 = modint<1000000007, 5, 1>; using modint_998244353 = modint<998244353, 3, 23>; template<int id> using modint_dynamic = modint<0, 0, id>; template<typename T = int> class Graph { struct Edge { Edge() = default; Edge(int i, int t, T c) : id{i}, to{t}, cost{c} {} int id; int to; T cost; operator int() const { return to; } }; public: Graph(int n) : m_v{n}, m_edges(n) {} void addEdge(int u, int v, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, 1); if (bi) { m_edges[v].emplace_back(m_e, u, 1); } m_e++; } void addEdge(int u, int v, const T& c, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, c); if (bi) { m_edges[v].emplace_back(m_e, u, c); } m_e++; } const Vec<Edge>& operator[](const int u) const { assert(0 <= u and u < m_v); return m_edges[u]; } Vec<Edge>& operator[](const int u) { assert(0 <= u and u < m_v); return m_edges[u]; } int v() const { return m_v; } int e() const { return m_e; } friend Ostream& operator<<(Ostream& os, const Graph& g) { for (int u : rep(g.v())) { for (const auto& [id, v, c] : g[u]) { os << "[" << id << "]: "; os << u << "->" << v << "(" << c << ")\n"; } } return os; } Vec<T> sizes(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<T> ss(N, 1); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_0, v, c] : m_edges[u]) { if (v == p) { continue; } dfs(v, u); ss[u] += ss[v]; } })(root, -1); return ss; } Vec<T> depths(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<T> ds(N, 0); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_1, v, c] : m_edges[u]) { if (v == p) { continue; } ds[v] = ds[u] + c; dfs(v, u); } })(root, -1); return ds; } Vec<int> parents(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<int> ps(N, -1); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_2, v, c] : m_edges[u]) { if (v == p) { continue; } ps[v] = u; dfs(v, u); } })(root, -1); return ps; } private: int m_v; int m_e = 0; Vec<Vec<Edge>> m_edges; }; template<typename T> Vec<T> divisors(const T n) { Vec<T> head, tail; for (T i = 1; i * i <= n; i++) { if (n % i == 0) { head.push_back(i); if (i * i != n) { tail.push_back(n / i); } } } reverseAll(tail); concat(head, tail); return head; } template<typename Engine> class RNG { public: using result_type = typename Engine::result_type; using T = result_type; static constexpr T min() { return Engine::min(); } static constexpr T max() { return Engine::max(); } RNG() : RNG(std::random_device{}()) {} RNG(T seed) : m_rng(seed) {} T operator()() { return m_rng(); } template<typename T> T val(T min, T max) { return std::uniform_int_distribution<T>(min, max)(m_rng); } template<typename T, typename... Args> auto tup(T min, T max, const Args&... offsets) { return Tup<T, Args...>{val<T>(min, max), val<Args>(offsets)...}; } template<typename T> Vec<T> vec(int n, T min, T max) { return genVec<T>(n, [&]() { return val<T>(min, max); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m, T min, T max) { return genVec<Vec<T>>(n, [&]() { return vec(m, min, max); }); } private: Engine m_rng; }; inline RNG<std::mt19937> rng; inline RNG<std::mt19937_64> rng64; template<u64 mod_, u64 root_, u64 max2p_> class modint64 { template<typename U = u64&> static U modRef() { static u64 s_mod = 0; return s_mod; } template<typename U = u64&> static U rootRef() { static u64 s_root = 0; return s_root; } template<typename U = u64&> static U max2pRef() { static u64 s_max2p = 0; return s_max2p; } public: static_assert(mod_ <= LIMMAX<i64>, "mod(signed int size) only supported!"); static constexpr bool isDynamic() { return (mod_ == 0); } template<typename U = const u64> static constexpr std::enable_if_t<mod_ != 0, U> mod() { return mod_; } template<typename U = const u64> static std::enable_if_t<mod_ == 0, U> mod() { return modRef(); } template<typename U = const u64> static constexpr std::enable_if_t<mod_ != 0, U> root() { return root_; } template<typename U = const u64> static std::enable_if_t<mod_ == 0, U> root() { return rootRef(); } template<typename U = const u64> static constexpr std::enable_if_t<mod_ != 0, U> max2p() { return max2p_; } template<typename U = const u64> static std::enable_if_t<mod_ == 0, U> max2p() { return max2pRef(); } template<typename U = u64> static void setMod(std::enable_if_t<mod_ == 0, U> m) { assert(1 <= m and m <= LIMMAX<i64>); modRef() = m; sinvRef() = {1, 1}; factRef() = {1, 1}; ifactRef() = {1, 1}; } template<typename U = u64> static void setRoot(std::enable_if_t<mod_ == 0, U> r) { rootRef() = r; } template<typename U = u64> static void setMax2p(std::enable_if_t<mod_ == 0, U> m) { max2pRef() = m; } constexpr modint64() : m_val{0} {} constexpr modint64(const i64 v) : m_val{normLL(v)} {} constexpr void setRaw(const u64 v) { m_val = v; } constexpr modint64 operator+() const { return *this; } constexpr modint64 operator-() const { return modint64{0} - (*this); } constexpr modint64& operator+=(const modint64& m) { m_val = norm(m_val + m.val()); return *this; } constexpr modint64& operator-=(const modint64& m) { m_val = norm(m_val + mod() - m.val()); return *this; } constexpr modint64& operator*=(const modint64& m) { m_val = normLL((i128)m_val * (i128)m.val() % (i128)mod()); return *this; } constexpr modint64& operator/=(const modint64& m) { return *this *= m.inv(); } constexpr modint64 operator+(const modint64& m) const { auto v = *this; return v += m; } constexpr modint64 operator-(const modint64& m) const { auto v = *this; return v -= m; } constexpr modint64 operator*(const modint64& m) const { auto v = *this; return v *= m; } constexpr modint64 operator/(const modint64& m) const { auto v = *this; return v /= m; } constexpr bool operator==(const modint64& m) const { return m_val == m.val(); } constexpr bool operator!=(const modint64& m) const { return not(*this == m); } friend Istream& operator>>(Istream& is, modint64& m) { i64 v; return is >> v, m = v, is; } friend Ostream& operator<<(Ostream& os, const modint64& m) { return os << m.val(); } constexpr u64 val() const { return m_val; } template<typename I> constexpr modint64 pow(I n) const { return powerInt(*this, n); } constexpr modint64 inv() const { return inverse<i64>(m_val, mod()); } modint64 sinv() const { return sinv(m_val); } static modint64 sinv(u32 n) { auto& is = sinvRef(); for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); } return is[n]; } static modint64 fact(u32 n) { auto& fs = factRef(); for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); } return fs[n]; } static modint64 ifact(u32 n) { auto& ifs = ifactRef(); for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); } return ifs[n]; } static modint64 perm(int n, int k) { return k > n or k < 0 ? modint64{0} : fact(n) * ifact(n - k); } static modint64 comb(int n, int k) { return k > n or k < 0 ? modint64{0} : fact(n) * ifact(n - k) * ifact(k); } private: static Vec<modint64>& sinvRef() { static Vec<modint64> is{1, 1}; return is; } static Vec<modint64>& factRef() { static Vec<modint64> fs{1, 1}; return fs; } static Vec<modint64>& ifactRef() { static Vec<modint64> ifs{1, 1}; return ifs; } static constexpr u64 norm(const u64 x) { return x < mod() ? x : x - mod(); } static constexpr u64 normLL(const i64 x) { return norm(u64((i128)x % (i128)mod() + (i128)mod())); } u64 m_val; }; template<int id> using modint64_dynamic = modint64<0, 0, id>; template<typename mint> bool millerRabin(u64 n, const Vec<u64>& as) { auto d = n - 1; for (; (d & 1) == 0; d >>= 1) {} for (const u64 a : as) { if (n <= a) { break; } auto s = d; mint x = mint(a).pow(s); while (x.val() != 1 and x.val() != n - 1 and s != n - 1) { x *= x, s <<= 1; } if (x.val() != n - 1 and s % 2 == 0) { return false; } } return true; } inline bool isPrime(u64 n) { using mint = modint_dynamic<873293817>; using mint64 = modint64_dynamic<828271328>; if (n == 1) { return false; } if ((n & 1) == 0) { return n == 2; } if (n < (1ULL << 30)) { mint::setMod(n); return millerRabin<mint>(n, {2, 7, 61}); } else { mint64::setMod(n); return millerRabin<mint64>(n, {2, 325, 9375, 28178, 450775, 9780504}); } } template<typename mint> u64 pollardRho(u64 n) { if (n % 2 == 0) { return 2; } if (isPrime(n)) { return n; } mint c; auto f = [&](const mint& x) { return x * x + c; }; while (true) { mint x, y, ys, q = 1; y = rng64.val<u64>(0, n - 2) + 2; c = rng64.val<u64>(0, n - 2) + 2; u64 d = 1; constexpr u32 dk = 128; for (u32 r = 1; d == 1; r <<= 1) { x = y; for (u32 i = 0; i < r; i++) { y = f(y); } for (u32 k = 0; k < r and d == 1; k += dk) { ys = y; for (u32 i = 0; i < dk and i < r - k; i++) { q *= x - (y = f(y)); } d = std::gcd((u64)q.val(), n); } } if (d == n) { do { d = std::gcd(u64((x - (ys = f(ys))).val()), n); } while (d == 1); } if (d != n) { return d; } } return n; } Map<u64, int> primeFactors(u64 n) { using mint = modint_dynamic<287687412>; using mint64 = modint64_dynamic<4832432>; Map<u64, int> ans; Fix([&](auto dfs, u64 x) -> void { while ((x & 1) == 0) { x >>= 1, ans[2]++; } if (x == 1) { return; } u64 p; if (x < (1ULL << 30)) { mint::setMod(x); p = pollardRho<mint>(x); } else { mint64::setMod(x); p = pollardRho<mint64>(x); } if (p == x) { ans[p]++; return; } dfs(p), dfs(x / p); })(n); return ans; } Vec<u64> divisors(const u64 n) { const auto fs = primeFactors(n); Vec<u64> ds{1}; for (const auto& [p, e] : fs) { u64 pe = p; const u32 dn = ds.size(); for (i32 i = 0; i < e; i++, pe *= p) { for (u32 j = 0; j < dn; j++) { ds.push_back(ds[j] * pe); } } } return ds; } int main() { using mint = modint_998244353; const auto [N, M] = in.tup<int, mint>(); const auto As = in.vec<i64>(N); i64 L = 1; for (int i : rep(N)) { L = std::lcm(L, As[i]); } Vec<i64> ps; for (const auto& p : primeFactors(L)) { ps.push_back(p.first); } const auto ds = divisors(L); mint ans = 0; for (const i64 g : ds) { i64 ind = 0; for (int i : rep(N)) { const i64 p = std::gcd(g, As[i]); ind += p; } const mint way = M.pow(ind); i64 x = L / g; mint phi = x; for (i64 p : ps) { if (x % p == 0) { phi *= mint(p - 1) / p; } } void(0); ans += phi * way; } void(0); ans /= L; out.ln(ans); return 0; }