結果
| 問題 |
No.2262 Fractions
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-04-07 23:18:40 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 897 ms / 2,000 ms |
| コード長 | 18,883 bytes |
| コンパイル時間 | 2,143 ms |
| コンパイル使用メモリ | 265,296 KB |
| 最終ジャッジ日時 | 2025-02-12 02:45:16 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 45 |
ソースコード
/**
* date : 2023-04-07 23:18:37
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N,F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(vector<T> &v) {
return next_permutation(begin(v), end(v));
}
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
struct Rational {
using R = Rational;
using i128 = __int128_t;
using i64 = long long;
using u64 = unsigned long long;
long long x, y;
Rational() : x(0), y(1) {}
Rational(long long _x, long long _y = 1) : x(_x), y(_y) {
assert(y != 0);
if (_y != 1) {
long long g = gcd(x, y);
if (g != 0) x /= g, y /= g;
if (y < 0) x = -x, y = -y;
}
}
u64 gcd(i64 A, i64 B) {
u64 a = A >= 0 ? A : -A;
u64 b = B >= 0 ? B : -B;
if (a == 0 || b == 0) return a + b;
int n = __builtin_ctzll(a);
int m = __builtin_ctzll(b);
a >>= n;
b >>= m;
while (a != b) {
int d = __builtin_ctzll(a - b);
bool f = a > b;
u64 c = f ? a : b;
b = f ? b : a;
a = (c - b) >> d;
}
return a << min(n, m);
}
friend R operator+(const R& l, const R& r) {
return R(l.x * r.y + l.y * r.x, l.y * r.y);
}
friend R operator-(const R& l, const R& r) {
return R(l.x * r.y - l.y * r.x, l.y * r.y);
}
friend R operator*(const R& l, const R& r) { return R(l.x * r.x, l.y * r.y); }
friend R operator/(const R& l, const R& r) {
assert(r.x != 0);
return R(l.x * r.y, l.y * r.x);
}
R& operator+=(const R& r) { return (*this) = (*this) + r; }
R& operator-=(const R& r) { return (*this) = (*this) - r; }
R& operator*=(const R& r) { return (*this) = (*this) * r; }
R& operator/=(const R& r) { return (*this) = (*this) / r; }
R operator-() const {
R r;
r.x = -x, r.y = y;
return r;
}
R inverse() const {
assert(x != 0);
R r;
r.x = y, r.y = x;
if (x < 0) r.x = -r.x, r.y = -r.y;
return r;
}
R pow(long long p) const {
R res(1), base(*this);
while (p) {
if (p & 1) res *= base;
base *= base;
p >>= 1;
}
return res;
}
friend bool operator==(const R& l, const R& r) {
return l.x == r.x && l.y == r.y;
};
friend bool operator!=(const R& l, const R& r) {
return l.x != r.x || l.y != r.y;
};
friend bool operator<(const R& l, const R& r) {
return i128(l.x) * r.y < i128(l.y) * r.x;
};
friend bool operator<=(const R& l, const R& r) { return l < r || l == r; }
friend bool operator>(const R& l, const R& r) {
return i128(l.x) * r.y > i128(l.y) * r.x;
};
friend bool operator>=(const R& l, const R& r) { return l > r || l == r; }
friend ostream& operator<<(ostream& os, const R& r) {
os << r.x;
if (r.x != 0 && r.y != 1) os << "/" << r.y;
return os;
}
long long toMint(long long mod) {
assert(mod != 0);
i64 a = y, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return i128((u % mod + mod) % mod) * x % mod;
}
};
template <typename R = Rational>
struct Binomial {
vector<R> fc;
Binomial(int = 0) { fc.emplace_back(1); }
void extend() {
int n = fc.size();
R nxt = fc.back() * n;
fc.push_back(nxt);
}
R fac(int n) {
while ((int)fc.size() <= n) extend();
return fc[n];
}
R finv(int n) { return fac(n).inverse(); }
R inv(int n) { return R{1, max(n, 1)}; }
R C(int n, int r) {
if (n < 0 or r < 0 or n < r) return R{0};
return fac(n) * finv(n - r) * finv(r);
}
R operator()(int n, int r) { return C(n, r); }
template <typename I>
R multinomial(const vector<I>& r) {
static_assert(is_integral<I>::value == true);
int n = 0;
for (auto& x : r) {
if (x < 0) return R{0};
n += x;
}
R res = fac(n);
for (auto& x : r) res *= finv(x);
return res;
}
template <typename I>
R operator()(const vector<I>& r) {
return multinomial(r);
}
};
// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<int> prime_enumerate(int N) {
vector<bool> sieve(N / 3 + 1, 1);
for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) {
if (!sieve[i]) continue;
for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p,
qe = sieve.size();
q < qe; q += r = s - r)
sieve[q] = 0;
}
vector<int> ret{2, 3};
for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++)
if (sieve[i]) ret.push_back(p);
while (!ret.empty() && ret.back() > N) ret.pop_back();
return ret;
}
struct divisor_transform {
template <typename T>
static void zeta_transform(vector<T> &a) {
int N = a.size() - 1;
auto sieve = prime_enumerate(N);
for (auto &p : sieve)
for (int k = 1; k * p <= N; ++k) a[k * p] += a[k];
}
template <typename T>
static void mobius_transform(T &a) {
int N = a.size() - 1;
auto sieve = prime_enumerate(N);
for (auto &p : sieve)
for (int k = N / p; k > 0; --k) a[k * p] -= a[k];
}
template <typename I, typename T>
static void zeta_transform(map<I, T> &a) {
for (auto p = rbegin(a); p != rend(a); p++)
for (auto &x : a) {
if (p->first == x.first) break;
if (p->first % x.first == 0) p->second += x.second;
}
}
template <typename I, typename T>
static void mobius_transform(map<I, T> &a) {
for (auto &x : a) {
for (auto p = rbegin(a); p != rend(a); p++) {
if (x.first == p->first) break;
if (p->first % x.first == 0) p->second -= x.second;
}
}
}
};
struct multiple_transform {
template <typename T>
static void zeta_transform(vector<T> &a) {
int N = a.size() - 1;
auto sieve = prime_enumerate(N);
for (auto &p : sieve)
for (int k = N / p; k > 0; --k) a[k] += a[k * p];
}
template <typename T>
static void mobius_transform(vector<T> &a) {
int N = a.size() - 1;
auto sieve = prime_enumerate(N);
for (auto &p : sieve)
for (int k = 1; k * p <= N; ++k) a[k] -= a[k * p];
}
template <typename I, typename T>
static void zeta_transform(map<I, T> &a) {
for (auto &x : a)
for (auto p = rbegin(a); p->first != x.first; p++)
if (p->first % x.first == 0) x.second += p->second;
}
template <typename I, typename T>
static void mobius_transform(map<I, T> &a) {
for (auto p1 = rbegin(a); p1 != rend(a); p1++)
for (auto p2 = rbegin(a); p2 != p1; p2++)
if (p2->first % p1->first == 0) p1->second -= p2->second;
}
};
/**
* @brief 倍数変換・約数変換
* @docs docs/multiplicative-function/divisor-multiple-transform.md
*/
// f(n, p, c) : n = pow(p, c), f is multiplicative function
template <typename T, T (*f)(int, int, int)>
struct enamurate_multiplicative_function {
enamurate_multiplicative_function(int _n)
: ps(prime_enumerate(_n)), a(_n + 1, T()), n(_n), p(ps.size()) {}
vector<T> run() {
a[1] = 1;
dfs(-1, 1, 1);
return a;
}
private:
vector<int> ps;
vector<T> a;
int n, p;
void dfs(int i, long long x, T y) {
a[x] = y;
if (y == T()) return;
for (int j = i + 1; j < p; j++) {
long long nx = x * ps[j];
long long dx = ps[j];
if (nx > n) break;
for (int c = 1; nx <= n; nx *= ps[j], dx *= ps[j], ++c) {
dfs(j, nx, y * f(dx, ps[j], c));
}
}
}
};
/**
* @brief 乗法的関数の列挙
*/
namespace multiplicative_function {
template <typename T>
T moebius(int, int, int c) {
return c == 0 ? 1 : c == 1 ? -1 : 0;
}
template <typename T>
T sigma0(int, int, int c) {
return c + 1;
}
template <typename T>
T sigma1(int n, int p, int) {
return (n - 1) / (p - 1) + n;
}
template <typename T>
T totient(int n, int p, int) {
return n - n / p;
}
} // namespace multiplicative_function
template <typename T>
static constexpr vector<T> mobius_function(int n) {
enamurate_multiplicative_function<T, multiplicative_function::moebius<T>> em(
n);
return em.run();
}
template <typename T>
static constexpr vector<T> sigma0(int n) {
enamurate_multiplicative_function<T, multiplicative_function::sigma0<T>> em(
n);
return em.run();
}
template <typename T>
static constexpr vector<T> sigma1(int n) {
enamurate_multiplicative_function<T, multiplicative_function::sigma1<T>> em(
n);
return em.run();
}
template <typename T>
static constexpr vector<T> totient(int n) {
enamurate_multiplicative_function<T, multiplicative_function::totient<T>> em(
n);
return em.run();
}
/**
* @brief 有名な乗法的関数
* @docs docs/multiplicative-function/mf-famous-series.md
*/
using namespace Nyaan;
// k 番目に小さい
pl calc(ll N, ll K) {
trc2(N, K);
auto cnt = [&](Rational f) -> ll {
vi v(N + 1);
rep1(i, N) { v[i] = i * ll(f.x) / int(f.y); }
divisor_transform::mobius_transform(v);
// trc2(f, Sum(v));
return Sum(v);
};
Rational L{0, 1};
Rational M{1, 2};
Rational R{1, 1};
while (true) {
// trc2(L.x, L.y, M.x, M.y, R.x, R.y);
ll c = cnt(M);
if (c == K) {
break;
}
if (c < K) {
for (ll i = 1;; i *= 2) {
Rational f{L.x + R.x * i, L.y + R.y * i};
if (max(f.x, f.y) > N) break;
if (cnt(f) == K) return {f.x, f.y};
if (cnt(f) < K) {
L = f;
} else {
break;
}
}
} else {
for (ll i = 1;; i *= 2) {
Rational f{L.x * i + R.x, L.y * i + R.y};
if (max(f.x, f.y) > N) break;
if (cnt(f) == K) return {f.x, f.y};
if (cnt(f) >= K) {
R = f;
} else {
break;
}
}
}
M = Rational{L.x + R.x, L.y + R.y};
}
return {M.x, M.y};
}
void q() {
inl(N, K);
vi tot(N + 10);
rep(i, sz(tot)) tot[i] = i;
divisor_transform::mobius_transform(tot);
if (N <= 2) trc(tot);
ll s = -1;
rep1(i, N) s += tot[i];
trc(s);
ll p = -1, q = -1;
if (K <= s) {
tie(p, q) = calc(N, K);
} else if (K == s + 1) {
p = q = 1;
} else if (K <= s * 2 + 1) {
tie(q, p) = calc(N, 2 * s + 1 - (K - 1));
} else {
// do nothing
}
if (p == -1) {
out(-1);
} else {
cout << p << "/" << q << "\n";
}
}
void Nyaan::solve() {
int t = 1;
in(t);
while (t--) q();
}