結果

問題 No.2265 Xor Range Substring Sum Query
ユーザー akakimidoriakakimidori
提出日時 2023-04-08 02:18:39
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 709 ms / 5,000 ms
コード長 10,700 bytes
コンパイル時間 14,711 ms
コンパイル使用メモリ 378,024 KB
実行使用メモリ 27,136 KB
最終ジャッジ日時 2024-10-03 00:25:51
合計ジャッジ時間 24,421 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 0 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 461 ms
26,624 KB
testcase_05 AC 474 ms
26,624 KB
testcase_06 AC 471 ms
26,624 KB
testcase_07 AC 468 ms
26,624 KB
testcase_08 AC 474 ms
26,624 KB
testcase_09 AC 679 ms
26,496 KB
testcase_10 AC 687 ms
26,496 KB
testcase_11 AC 690 ms
26,368 KB
testcase_12 AC 674 ms
26,624 KB
testcase_13 AC 689 ms
26,368 KB
testcase_14 AC 627 ms
25,984 KB
testcase_15 AC 618 ms
25,984 KB
testcase_16 AC 622 ms
26,112 KB
testcase_17 AC 621 ms
25,984 KB
testcase_18 AC 302 ms
27,136 KB
testcase_19 AC 306 ms
27,136 KB
testcase_20 AC 708 ms
26,752 KB
testcase_21 AC 709 ms
26,752 KB
testcase_22 AC 274 ms
13,952 KB
testcase_23 AC 277 ms
13,952 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// ---------- begin xor segment tree ----------
pub struct XorSegmentTree<T, F> {
    data: Vec<Vec<T>>,
    e: T,
    op: F,
    size: usize,
}

impl<T, F> XorSegmentTree<T, F>
where
    T: Clone,
    F: Fn(&T, &T) -> T,
{
    pub fn new(a: Vec<T>, e: T, op: F) -> Self {
        let size = a.len();
        assert!(size.next_power_of_two() == size);
        let k = size.trailing_zeros() as usize / 2;
        let mut data = Vec::with_capacity(k + 1);
        data.push(a);
        for i in 1..=k {
            let mut a = Vec::with_capacity(size);
            for data in data.last().unwrap().chunks(1 << i) {
                let (l, r) = data.split_at(1 << (i - 1));
                a.extend(l.iter().zip(r.iter()).map(|(l, r)| op(l, r)));
                a.extend(r.iter().zip(l.iter()).map(|(l, r)| op(l, r)));
            }
            data.push(a);
        }
        Self { data, e, op, size }
    }
    pub fn find(&self, mut l: usize, mut r: usize, xor: usize) -> T {
        assert!(l <= r && r <= self.size && xor < self.size);
        if l == r {
            return self.e.clone();
        }
        let mut x = self.e.clone();
        let mut y = self.e.clone();
        for (shift, data) in self.data.iter().enumerate() {
            if l >> shift & 1 == 1 {
                x = (self.op)(&x, &data[l ^ xor]);
                l += 1 << shift;
            }
            if r >> shift & 1 == 1 {
                r -= 1 << shift;
                y = (self.op)(&data[r ^ xor], &y);
            }
            if l == r {
                return (self.op)(&x, &y);
            }
        }
        let k = self.data.len() - 1;
        l >>= k;
        r >>= k;
        let data = self.data.last().unwrap();
        for i in l..r {
            x = (self.op)(&x, &data[(i << k) ^ xor]);
        }
        (self.op)(&x, &y)
    }
    fn update(&mut self, pos: usize, v: T) {
        assert!(pos < self.size);
        self.data[0][pos] = v;
        for shift in 1..self.data.len() {
            let s = (pos >> shift) << shift;
            let mut p = std::mem::take(&mut self.data[shift]);
            let c = &self.data[shift - 1][s..(s + (1 << shift))];
            let (l, r) = c.split_at(1 << (shift - 1));
            let ab = l.iter().zip(r.iter()).chain(r.iter().zip(l.iter()));
            for (p, (a, b)) in p[s..].iter_mut().zip(ab) {
                *p = (self.op)(a, b);
            }
            self.data[shift] = p;
        }
    }
}
// ---------- end xor segment tree ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;

pub trait Modulo {
    fn modulo() -> u32;
}

pub struct ConstantModulo<const M: u32>;

impl<const M: u32> Modulo for ConstantModulo<{ M }> {
    fn modulo() -> u32 {
        M
    }
}

pub struct ModInt<T>(u32, PhantomData<T>);

impl<T> Clone for ModInt<T> {
    fn clone(&self) -> Self {
        Self::new_unchecked(self.0)
    }
}

impl<T> Copy for ModInt<T> {}

impl<T: Modulo> Add for ModInt<T> {
    type Output = ModInt<T>;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> AddAssign for ModInt<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<T: Modulo> Sub for ModInt<T> {
    type Output = ModInt<T>;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> SubAssign for ModInt<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<T: Modulo> Mul for ModInt<T> {
    type Output = ModInt<T>;
    fn mul(self, rhs: Self) -> Self::Output {
        let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
        Self::new_unchecked(v as u32)
    }
}

impl<T: Modulo> MulAssign for ModInt<T> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<T: Modulo> Neg for ModInt<T> {
    type Output = ModInt<T>;
    fn neg(self) -> Self::Output {
        if self.is_zero() {
            Self::zero()
        } else {
            Self::new_unchecked(T::modulo() - self.0)
        }
    }
}

impl<T> std::fmt::Display for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> std::fmt::Debug for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> Default for ModInt<T> {
    fn default() -> Self {
        Self::zero()
    }
}

impl<T: Modulo> std::str::FromStr for ModInt<T> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<T: Modulo> From<usize> for ModInt<T> {
    fn from(val: usize) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as usize) as u32)
    }
}

impl<T: Modulo> From<u64> for ModInt<T> {
    fn from(val: u64) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as u64) as u32)
    }
}

impl<T: Modulo> From<i64> for ModInt<T> {
    fn from(val: i64) -> ModInt<T> {
        let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        ModInt::new_unchecked(v)
    }
}

impl<T> ModInt<T> {
    pub fn new_unchecked(n: u32) -> Self {
        ModInt(n, PhantomData)
    }
    pub fn zero() -> Self {
        ModInt::new_unchecked(0)
    }
    pub fn one() -> Self {
        ModInt::new_unchecked(1)
    }
    pub fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<T: Modulo> ModInt<T> {
    pub fn new(d: u32) -> Self {
        ModInt::new_unchecked(d % T::modulo())
    }
    pub fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::one();
        let mut s = *self;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        t
    }
    pub fn inv(&self) -> Self {
        assert!(!self.is_zero());
        self.pow(T::modulo() as u64 - 2)
    }
    pub fn fact(n: usize) -> Self {
        (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn perm(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn binom(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        let k = k.min(n - k);
        let mut nu = Self::one();
        let mut de = Self::one();
        for i in 0..k {
            nu *= Self::from(n - i);
            de *= Self::from(i + 1);
        }
        nu * de.inv()
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
    fact: Vec<ModInt<T>>,
    ifact: Vec<ModInt<T>>,
    inv: Vec<ModInt<T>>,
}

impl<T: Modulo> Precalc<T> {
    pub fn new(n: usize) -> Precalc<T> {
        let mut inv = vec![ModInt::one(); n + 1];
        let mut fact = vec![ModInt::one(); n + 1];
        let mut ifact = vec![ModInt::one(); n + 1];
        for i in 2..=n {
            fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
        }
        ifact[n] = fact[n].inv();
        if n > 0 {
            inv[n] = ifact[n] * fact[n - 1];
        }
        for i in (1..n).rev() {
            ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
            inv[i] = ifact[i] * fact[i - 1];
        }
        Precalc { fact, ifact, inv }
    }
    pub fn inv(&self, n: usize) -> ModInt<T> {
        assert!(n > 0);
        self.inv[n]
    }
    pub fn fact(&self, n: usize) -> ModInt<T> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<T> {
        self.ifact[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

type M = ModInt<ConstantModulo<998_244_353>>;

// ---------- begin scannner ----------
#[allow(dead_code)]
mod scanner {
    use std::str::FromStr;
    pub struct Scanner<'a> {
        it: std::str::SplitWhitespace<'a>,
    }
    impl<'a> Scanner<'a> {
        pub fn new(s: &'a String) -> Scanner<'a> {
            Scanner {
                it: s.split_whitespace(),
            }
        }
        pub fn next<T: FromStr>(&mut self) -> T {
            self.it.next().unwrap().parse::<T>().ok().unwrap()
        }
        pub fn next_bytes(&mut self) -> Vec<u8> {
            self.it.next().unwrap().bytes().collect()
        }
        pub fn next_chars(&mut self) -> Vec<char> {
            self.it.next().unwrap().chars().collect()
        }
        pub fn next_vec<T: FromStr>(&mut self, len: usize) -> Vec<T> {
            (0..len).map(|_| self.next()).collect()
        }
    }
}
// ---------- end scannner ----------

use std::io::Write;

fn main() {
    use std::io::Read;
    let mut s = String::new();
    std::io::stdin().read_to_string(&mut s).unwrap();
    let mut sc = scanner::Scanner::new(&s);
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    run(&mut sc, &mut out);
}

fn run<W: Write>(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter<W>) {
    let n: usize = sc.next();
    let s = sc.next_bytes();
    let mut a = vec![M::one(); (1 << n) + 1];
    let mut b = vec![M::one(); (1 << n) + 1];
    for i in 1..a.len() {
        a[i] = M::new(2) * a[i - 1];
        b[i] = M::new(11) * b[i - 1];
    }
    type T = (M, u32);
    let merge = |l: &T, r: &T| -> T { (l.0 * b[r.1 as usize] + r.0 * a[l.1 as usize], l.1 + r.1) };
    let a = s
        .iter()
        .map(|s| (M::new((*s - b'0') as u32), 1))
        .collect::<Vec<_>>();
    let mut seg = XorSegmentTree::new(a, (M::zero(), 0), merge);
    let q: usize = sc.next();
    for _ in 0..q {
        let op: u8 = sc.next();
        if op == 1 {
            let x: usize = sc.next();
            let y: u32 = sc.next();
            seg.update(x, (M::new(y), 1));
        } else {
            let l: usize = sc.next();
            let r = sc.next::<usize>() + 1;
            let x: usize = sc.next();
            let ans = seg.find(l, r, x).0;
            writeln!(out, "{}", ans).ok();
        }
    }
}
0