結果
問題 | No.2265 Xor Range Substring Sum Query |
ユーザー | akakimidori |
提出日時 | 2023-04-08 02:18:39 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 709 ms / 5,000 ms |
コード長 | 10,700 bytes |
コンパイル時間 | 14,711 ms |
コンパイル使用メモリ | 378,024 KB |
実行使用メモリ | 27,136 KB |
最終ジャッジ日時 | 2024-10-03 00:25:51 |
合計ジャッジ時間 | 24,421 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 0 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 461 ms
26,624 KB |
testcase_05 | AC | 474 ms
26,624 KB |
testcase_06 | AC | 471 ms
26,624 KB |
testcase_07 | AC | 468 ms
26,624 KB |
testcase_08 | AC | 474 ms
26,624 KB |
testcase_09 | AC | 679 ms
26,496 KB |
testcase_10 | AC | 687 ms
26,496 KB |
testcase_11 | AC | 690 ms
26,368 KB |
testcase_12 | AC | 674 ms
26,624 KB |
testcase_13 | AC | 689 ms
26,368 KB |
testcase_14 | AC | 627 ms
25,984 KB |
testcase_15 | AC | 618 ms
25,984 KB |
testcase_16 | AC | 622 ms
26,112 KB |
testcase_17 | AC | 621 ms
25,984 KB |
testcase_18 | AC | 302 ms
27,136 KB |
testcase_19 | AC | 306 ms
27,136 KB |
testcase_20 | AC | 708 ms
26,752 KB |
testcase_21 | AC | 709 ms
26,752 KB |
testcase_22 | AC | 274 ms
13,952 KB |
testcase_23 | AC | 277 ms
13,952 KB |
ソースコード
// ---------- begin xor segment tree ---------- pub struct XorSegmentTree<T, F> { data: Vec<Vec<T>>, e: T, op: F, size: usize, } impl<T, F> XorSegmentTree<T, F> where T: Clone, F: Fn(&T, &T) -> T, { pub fn new(a: Vec<T>, e: T, op: F) -> Self { let size = a.len(); assert!(size.next_power_of_two() == size); let k = size.trailing_zeros() as usize / 2; let mut data = Vec::with_capacity(k + 1); data.push(a); for i in 1..=k { let mut a = Vec::with_capacity(size); for data in data.last().unwrap().chunks(1 << i) { let (l, r) = data.split_at(1 << (i - 1)); a.extend(l.iter().zip(r.iter()).map(|(l, r)| op(l, r))); a.extend(r.iter().zip(l.iter()).map(|(l, r)| op(l, r))); } data.push(a); } Self { data, e, op, size } } pub fn find(&self, mut l: usize, mut r: usize, xor: usize) -> T { assert!(l <= r && r <= self.size && xor < self.size); if l == r { return self.e.clone(); } let mut x = self.e.clone(); let mut y = self.e.clone(); for (shift, data) in self.data.iter().enumerate() { if l >> shift & 1 == 1 { x = (self.op)(&x, &data[l ^ xor]); l += 1 << shift; } if r >> shift & 1 == 1 { r -= 1 << shift; y = (self.op)(&data[r ^ xor], &y); } if l == r { return (self.op)(&x, &y); } } let k = self.data.len() - 1; l >>= k; r >>= k; let data = self.data.last().unwrap(); for i in l..r { x = (self.op)(&x, &data[(i << k) ^ xor]); } (self.op)(&x, &y) } fn update(&mut self, pos: usize, v: T) { assert!(pos < self.size); self.data[0][pos] = v; for shift in 1..self.data.len() { let s = (pos >> shift) << shift; let mut p = std::mem::take(&mut self.data[shift]); let c = &self.data[shift - 1][s..(s + (1 << shift))]; let (l, r) = c.split_at(1 << (shift - 1)); let ab = l.iter().zip(r.iter()).chain(r.iter().zip(l.iter())); for (p, (a, b)) in p[s..].iter_mut().zip(ab) { *p = (self.op)(a, b); } self.data[shift] = p; } } } // ---------- end xor segment tree ---------- // ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo<const M: u32>; impl<const M: u32> Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt<T>(u32, PhantomData<T>); impl<T> Clone for ModInt<T> { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl<T> Copy for ModInt<T> {} impl<T: Modulo> Add for ModInt<T> { type Output = ModInt<T>; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> AddAssign for ModInt<T> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<T: Modulo> Sub for ModInt<T> { type Output = ModInt<T>; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> SubAssign for ModInt<T> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<T: Modulo> Mul for ModInt<T> { type Output = ModInt<T>; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl<T: Modulo> MulAssign for ModInt<T> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<T: Modulo> Neg for ModInt<T> { type Output = ModInt<T>; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl<T> std::fmt::Display for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> std::fmt::Debug for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> Default for ModInt<T> { fn default() -> Self { Self::zero() } } impl<T: Modulo> std::str::FromStr for ModInt<T> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<T: Modulo> From<usize> for ModInt<T> { fn from(val: usize) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl<T: Modulo> From<u64> for ModInt<T> { fn from(val: u64) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl<T: Modulo> From<i64> for ModInt<T> { fn from(val: i64) -> ModInt<T> { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl<T> ModInt<T> { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl<T: Modulo> ModInt<T> { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc<T> { fact: Vec<ModInt<T>>, ifact: Vec<ModInt<T>>, inv: Vec<ModInt<T>>, } impl<T: Modulo> Precalc<T> { pub fn new(n: usize) -> Precalc<T> { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt<T> { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt<T> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<T> { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt<ConstantModulo<998_244_353>>; // ---------- begin scannner ---------- #[allow(dead_code)] mod scanner { use std::str::FromStr; pub struct Scanner<'a> { it: std::str::SplitWhitespace<'a>, } impl<'a> Scanner<'a> { pub fn new(s: &'a String) -> Scanner<'a> { Scanner { it: s.split_whitespace(), } } pub fn next<T: FromStr>(&mut self) -> T { self.it.next().unwrap().parse::<T>().ok().unwrap() } pub fn next_bytes(&mut self) -> Vec<u8> { self.it.next().unwrap().bytes().collect() } pub fn next_chars(&mut self) -> Vec<char> { self.it.next().unwrap().chars().collect() } pub fn next_vec<T: FromStr>(&mut self, len: usize) -> Vec<T> { (0..len).map(|_| self.next()).collect() } } } // ---------- end scannner ---------- use std::io::Write; fn main() { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); let mut sc = scanner::Scanner::new(&s); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); run(&mut sc, &mut out); } fn run<W: Write>(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter<W>) { let n: usize = sc.next(); let s = sc.next_bytes(); let mut a = vec![M::one(); (1 << n) + 1]; let mut b = vec![M::one(); (1 << n) + 1]; for i in 1..a.len() { a[i] = M::new(2) * a[i - 1]; b[i] = M::new(11) * b[i - 1]; } type T = (M, u32); let merge = |l: &T, r: &T| -> T { (l.0 * b[r.1 as usize] + r.0 * a[l.1 as usize], l.1 + r.1) }; let a = s .iter() .map(|s| (M::new((*s - b'0') as u32), 1)) .collect::<Vec<_>>(); let mut seg = XorSegmentTree::new(a, (M::zero(), 0), merge); let q: usize = sc.next(); for _ in 0..q { let op: u8 = sc.next(); if op == 1 { let x: usize = sc.next(); let y: u32 = sc.next(); seg.update(x, (M::new(y), 1)); } else { let l: usize = sc.next(); let r = sc.next::<usize>() + 1; let x: usize = sc.next(); let ans = seg.find(l, r, x).0; writeln!(out, "{}", ans).ok(); } } }