結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
AC2K
|
| 提出日時 | 2023-04-08 10:13:24 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 37 ms / 9,973 ms |
| コード長 | 10,802 bytes |
| コンパイル時間 | 2,773 ms |
| コンパイル使用メモリ | 247,956 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-10-03 06:00:37 |
| 合計ジャッジ時間 | 3,769 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
#line 1 "test/yuki/No-3030.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/3030"
#line 2 "template.hpp"
#include<bits/stdc++.h>
#define rep(i, N) for (int i = 0; i < (N); i++)
#define all(x) (x).begin(),(x).end()
#define popcount(x) __builtin_popcount(x)
using i128=__int128_t;
using ll = long long;
using ld = long double;
using graph = std::vector<std::vector<int>>;
using P = std::pair<int, int>;
constexpr int inf = 1e9;
constexpr ll infl = 1e18;
constexpr ld eps = 1e-6;
const long double pi = acos(-1);
constexpr uint64_t MOD = 1e9 + 7;
constexpr uint64_t MOD2 = 998244353;
constexpr int dx[] = { 1,0,-1,0 };
constexpr int dy[] = { 0,1,0,-1 };
template<class T>constexpr inline void chmax(T&x,T y){if(x<y)x=y;}
template<class T>constexpr inline void chmin(T&x,T y){if(x>y)x=y;}
#line 2 "internal/barrett.hpp"
namespace internal {
///@brief barrett reduction
class barrett {
using u32 = uint32_t;
using u64 = uint64_t;
u64 m;
u64 im;
public:
explicit barrett() = default;
explicit barrett(u64 m_) :m(m_), im((u64)(long double)static_cast<u64>(-1) / m_ + 1) {}
u64 get_mod() const { return m; }
u64 reduce(int64_t a)const{
if (a < 0) return m - reduce(-a);
u64 q = ((__uint128_t)a * im) >> 64;
a -= m * q;
if (a >= m) a -= m;
return a;
}
u64 mul(u64 a, u64 b) const {
if (a == 0 || b == 0) {
return 0;
}
u64 z = a;
z *= b;
u64 x = (u64)(((__uint128_t)(z)*im) >> 64);
u32 v = (u32)(z - x * m);
if (v >= m)v += m;
return v;
}
};
}
#line 4 "internal/montgomery.hpp"
namespace internal {
using u32 = uint32_t;
using u64 = uint64_t;
using i32 = int32_t;
using i64 = int64_t;
using u128 = __uint128_t;
using i128 = __int128_t;
/// @brief MontgomeryReduction
template<typename T,typename LargeT>
class MontgomeryReduction64 {
static constexpr int lg = std::numeric_limits<T>::digits;
T mod, r, r2, minv;
T calc_inv() {
T t = 0, res = 0;
for (int i = 0; i < lg; i++) {
if (~t & 1) {
t += mod;
res += static_cast<T>(1) << i;
}
t >>= 1;
}
return res;
}
public:
MontgomeryReduction64() = default;
constexpr T get_mod() { return mod; }
constexpr int get_lg() { return lg; }
void set_mod(const T& m) {
assert(m > 0);
assert(m & 1);
mod = m;
r = (-static_cast<T>(mod)) % mod;
r2 = (-static_cast<LargeT>(mod)) % mod;
minv = calc_inv();
}
T reduce(LargeT x) const {
u64 res = (x + static_cast<LargeT>(static_cast<T>(x) * minv) * mod) >> lg;
if (res >= mod)res -= mod;
return res;
}
T generate(LargeT x) {
return reduce(x * r2);
}
T mult(T x, T y) {
return reduce(static_cast<LargeT>(x) * y);
}
};
};
#line 6 "math/dynamic_modint.hpp"
template <int id = -1> class barrett_modint {
using u32 = uint32_t;
using u64 = uint64_t;
using i32 = int32_t;
using i64 = int64_t;
using br = internal::barrett;
static br brt;
static u32 mod;
u32 v; // value
public:
static void set_mod(u32 mod_) {
brt = br(mod_);
mod = mod_;
}
public:
explicit constexpr barrett_modint() : v(0) {
assert(mod);
} // modが決定済みである必要がある
explicit constexpr barrett_modint(i64 v_) : v(brt.reduce(v_)) {
assert(mod);
}
u32 val() const { return v; }
static u32 get_mod() { return mod; }
using mint = barrett_modint<id>;
// operators
constexpr mint& operator=(i64 r) {
v = brt.reduce(r);
return (*this);
}
constexpr mint& operator+=(const mint& r) {
v += r.v;
if (v >= mod) {
v -= mod;
}
return (*this);
}
constexpr mint& operator-=(const mint& r) {
v += mod - r.v;
if (v >= mod) {
v -= mod;
}
return (*this);
}
constexpr mint& operator*=(const mint& r) {
v = brt.mul(v, r.v);
return (*this);
}
constexpr mint operator+(const mint& r) const { return mint(*this) += r; }
constexpr mint operator-(const mint& r) const { return mint(*this) -= r; }
constexpr mint operator*(const mint& r) const { return mint(*this) *= r; }
constexpr mint& operator+=(i64 r) { return (*this) += mint(r); }
constexpr mint& operator-=(i64 r) { return (*this) -= mint(r); }
constexpr mint& operator*=(i64 r) { return (*this) *= mint(r); }
friend mint operator+(i64 l, const mint& r) { return mint(l) += r; }
friend mint operator+(const mint& l, i64 r) { return mint(l) += r; }
friend mint operator-(i64 l, const mint& r) { return mint(l) -= r; }
friend mint operator-(const mint& l, i64 r) { return mint(l) -= r; }
friend mint operator*(i64 l, const mint& r) { return mint(l) *= r; }
friend mint operator*(const mint& l, i64 r) { return mint(l) += r; }
friend std::ostream& operator<<(std::ostream& os, const mint& mt) {
os << mt.val();
return os;
}
friend std::istream& operator>>(std::istream& is, mint& mt) {
i64 v_;
is >> v_;
mt = v_;
return is;
}
template <typename T> mint pow(T e) const {
mint res(1), base(*this);
while (e) {
if (e & 1) {
res *= base;
}
e >>= 1;
base *= base;
}
return res;
}
inline mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint& r) { return (*this) *= r.inv(); }
mint operator/(const mint& r) const { return mint(*this) *= r.inv(); }
mint& operator/=(i64 r) { return (*this) /= mint(r); }
friend mint operator/(const mint& l, i64 r) { return mint(l) /= r; }
friend mint operator/(i64 l, const mint& r) { return mint(l) /= r; }
};
template <int id> typename barrett_modint<id>::u32 barrett_modint<id>::mod;
template <int id> typename barrett_modint<id>::br barrett_modint<id>::brt;
template <typename T = uint32_t, typename LargeT = uint64_t, int id = -1>
class dynamic_modint {
static T mod;
static internal::MontgomeryReduction64<T, LargeT> mr;
public:
static void set_mod(T mod_) {
mr.set_mod(mod_);
mod = mod_;
}
static T get_mod() { return mod; }
private:
T v;
public:
dynamic_modint(T v_ = 0) {
assert(mod);
v = mr.generate(v_);
}
T val() const { return mr.reduce(v); }
using mint = dynamic_modint<T, LargeT, id>;
mint& operator+=(const mint& r) {
v += r.v;
if (v >= mr.get_mod()) {
v -= mr.get_mod();
}
return (*this);
}
mint& operator-=(const mint& r) {
v += mr.get_mod() - r.v;
if (v >= mr.get_mod) {
v -= mr.get_mod();
}
return (*this);
}
mint& operator*=(const mint& r) {
v = mr.mult(v, r.v);
return (*this);
}
mint operator+(const mint& r) { return mint(*this) += r; }
mint operator-(const mint& r) { return mint(*this) -= r; }
mint operator*(const mint& r) { return mint(*this) *= r; }
mint& operator=(const T& v_) {
(*this) = mint(v_);
return (*this);
}
friend std::ostream& operator<<(std::ostream& os, const mint& mt) {
os << mt.val();
return os;
}
friend std::istream& operator>>(std::istream& is, mint& mt) {
T v_;
is >> v_;
mt = v_;
return is;
}
template <typename P> mint pow(P e) const {
assert(e >= 0);
mint res(1), base(*this);
while (e) {
if (e & 1) {
res *= base;
}
e >>= 1;
base *= base;
}
return res;
}
mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint& r) { return (*this) *= r.inv(); }
mint operator/(const mint& r) const { return mint(*this) *= r.inv(); }
mint& operator/=(T r) { return (*this) /= mint(r); }
friend mint operator/(const mint& l, T r) { return mint(l) /= r; }
friend mint operator/(T l, const mint& r) { return mint(l) /= r; }
};
template <typename T, typename LargeT, int id>
T dynamic_modint<T, LargeT, id>::mod;
template <typename T, typename LargeT, int id>
internal::MontgomeryReduction64<T, LargeT> dynamic_modint<T, LargeT, id>::mr;
/// @brief dynamic modint(動的modint)
/// @docs docs/math/dynamic_modint.md
#line 3 "math/miller.hpp"
namespace library {
namespace miller {
using i128 = __int128_t;
using u128 = __uint128_t;
using u64 = uint64_t;
using u32 = uint32_t;
template<typename mint>
bool inline miller_rabin(u64 n, const u64 bases[], int length) {
u64 d = n - 1;
while (~d & 1) {
d >>= 1;
}
u64 rev = n - 1;
if (mint::get_mod() != n) {
mint::set_mod(n);
}
for (int i = 0; i < length; i++) {
u64 a = bases[i];
if (n <= a) {
return true;
}
u64 t = d;
mint y = mint(a).pow(t);
while (t != n - 1 && y.val() != 1 && y.val() != rev) {
y *= y;
t <<= 1;
}
if (y.val() != rev && (~t & 1))return false;
}
return true;
}
constexpr u64 bases_int[3] = { 2, 7, 61 }; // intだと、2,7,61で十分
constexpr u64 bases_ll[7] = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };
constexpr bool is_prime(u64 n) {
if (n < 2) {
return false;
}
else if (n == 2) {
return true;
}
else if (~n & 1) {
return false;
}
if (n < (1ul << 31)) {
return miller_rabin<barrett_modint<-1>>(n, bases_int, 3);
}
else {
return miller_rabin<dynamic_modint<u64,u128,-1>>(n, bases_ll, 7);
}
}
};
};
///@brief MillerRabinの素数判定
#line 4 "test/yuki/No-3030.test.cpp"
using namespace std;
int main(){
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++){
uint64_t xi;
scanf("%lld", &xi);
printf("%lld ", xi);
if (library::miller::is_prime(xi)) {
puts("1");
} else {
puts("0");
}
}
}
AC2K