結果
問題 | No.2266 Fractions (hard) |
ユーザー | 👑 Nachia |
提出日時 | 2023-04-08 14:53:51 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 186 ms / 6,000 ms |
コード長 | 11,876 bytes |
コンパイル時間 | 1,073 ms |
コンパイル使用メモリ | 88,588 KB |
実行使用メモリ | 5,760 KB |
最終ジャッジ日時 | 2024-10-03 10:00:32 |
合計ジャッジ時間 | 3,486 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
5,248 KB |
testcase_01 | AC | 107 ms
5,632 KB |
testcase_02 | AC | 31 ms
5,504 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 9 ms
5,248 KB |
testcase_07 | AC | 5 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 1 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 110 ms
5,248 KB |
testcase_14 | AC | 6 ms
5,248 KB |
testcase_15 | AC | 6 ms
5,376 KB |
testcase_16 | AC | 104 ms
5,248 KB |
testcase_17 | AC | 81 ms
5,248 KB |
testcase_18 | AC | 128 ms
5,248 KB |
testcase_19 | AC | 103 ms
5,376 KB |
testcase_20 | AC | 5 ms
5,248 KB |
testcase_21 | AC | 124 ms
5,632 KB |
testcase_22 | AC | 64 ms
5,248 KB |
testcase_23 | AC | 8 ms
5,504 KB |
testcase_24 | AC | 8 ms
5,760 KB |
testcase_25 | AC | 154 ms
5,760 KB |
testcase_26 | AC | 9 ms
5,632 KB |
testcase_27 | AC | 105 ms
5,632 KB |
testcase_28 | AC | 8 ms
5,632 KB |
testcase_29 | AC | 8 ms
5,632 KB |
testcase_30 | AC | 8 ms
5,760 KB |
testcase_31 | AC | 7 ms
5,760 KB |
testcase_32 | AC | 101 ms
5,632 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 46 ms
5,760 KB |
testcase_35 | AC | 47 ms
5,632 KB |
testcase_36 | AC | 186 ms
5,632 KB |
testcase_37 | AC | 152 ms
5,504 KB |
ソースコード
#line 2 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\math\\floor-sum.hpp" #include <cassert> #include <utility> namespace nachia{ // a : any value // mod != 0 std::pair<long long, unsigned long long> SafeDiv(long long a, unsigned long long mod){ using u64 = unsigned long long; if(a >= 0) return std::make_pair(0, (u64)a); if(mod >= (u64)1 << 62) return std::make_pair(-1, (u64)a + mod); long long q = a / mod; long long m = a % (long long)mod; if(m){ q--; m += mod; } return std::make_pair(q, m); } unsigned long long nC2Uint64(unsigned long long n){ return (n%2) ? ((n-1)/2*n) : (n/2*(n-1)); } // n : any // 1 <= m // a : any // b : any // n * a%m + b%m < 2**64 unsigned long long FloorSumU64Unsigned( unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b ){ using u64 = unsigned long long; assert(1 <= m); u64 ans = 0; while(n){ if(a >= m){ ans += a / m * nC2Uint64(n); a %= m; } if(b >= m){ ans += b / m * n; b %= m; } u64 y_max = a * n + b; if (y_max < m) return ans; n = y_max / m; b = y_max % m; y_max = a; a = m; m = y_max; } return ans; } // n : any // 1 <= m // a : any // b : any // (n+1) * m < 2**64 unsigned long long FloorSumU64Signed( unsigned long long n, unsigned long long m, long long a, long long b ){ using u64 = unsigned long long; auto ua = SafeDiv(a, m); auto ub = SafeDiv(b, m); u64 ans = FloorSumU64Unsigned(n, m, ua.second, ub.second); ans += ua.first / m * nC2Uint64(n); ans += ub.first / m * n; return ans; } } // namespace nachia #line 4 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\math\\rational-number-search.hpp" namespace nachia{ class RationalNumberSearch{ public: RationalNumberSearch(unsigned long long maxVal){ assert(maxVal < 1ull << 63); mx = maxVal; } bool hasNext(){ return state >= 0; } std::pair<unsigned long long, unsigned long long> getNext() const { switch(state){ case 0: return { a0+a1, b0+b1 }; case 1: return { a0+tr*a1, b0+tr*b1 }; case 2: return { a1+tr*a0, b1+tr*b0 }; case 3: return { a0+(tl+tr)/2*a1, b0+(tl+tr)/2*b1 }; case 4: return { a1+(tl+tr)/2*a0, b1+(tl+tr)/2*b0 }; } return {0,0}; } void give(bool toRight){ int x = toRight ? 1 : 0; switch(state){ case 0: tl = 1; tr = 2; if(a0 + a1 > mx || b0 + b1 > mx){ state = -1; } else{ state = (toRight ? 1 : 2); } break; case 1: case 2: if(x ^ (2-state)){ state += 2; } else{ tr *= 2; tl *= 2; } break; case 3: case 4: ((x ^ (4-state)) ? tr : tl) = (tl+tr)/2; break; } while(givecheck()); } private: using UInt = unsigned long long; UInt a0=0, b0=1, a1=1, b1=0, tl=0, tr=0, mx; int state = 0; bool givecheck(){ auto st = [this](int x){ state = x; return true; }; auto trq = [this](UInt x0, UInt x1) -> bool { bool f = x0+tr*x1 > mx; if(f) tr = (mx-x0)/x1 + 1; return f; }; bool f = false; switch(state){ case -1 : break; case 0: if(a0 + a1 > mx || b0 + b1 > mx){ state = -1; } break; case 1: if(trq(a0,a1)) f = true; if(trq(b0,b1)) f = true; if(f) return st(3); break; case 2: if(trq(a1,a0)) f = true; if(trq(b1,b0)) f = true; if(f) return st(4); break; case 3: if(tl + 1 == tr){ a0 += a1 * tl; b0 += b1 * tl; return st(0); } break; case 4: if(tl + 1 == tr){ a1 += a0 * tl; b1 += b0 * tl; return st(0); } break; } return false; } }; } // namespace nachia #line 2 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\math\\multiplicative-convolution-usefloat.hpp" #line 4 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\math\\multiplicative-convolution-usefloat.hpp" #include <vector> #include <algorithm> namespace nachia{ // https://maspypy.com/dirichlet-%E7%A9%8D%E3%81%A8%E3%80%81%E6%95%B0%E8%AB%96%E9%96%A2%E6%95%B0%E3%81%AE%E7%B4%AF%E7%A9%8D%E5%92%8C#toc10 template<class Val> struct MultiplicativeConvolution{ using MyType = MultiplicativeConvolution; static long long Div(long long a, long long d){ return (long long)((double)a / (double)d); } struct Status{ long long N, K, L; Status(long long N){ this->N = N; if(N <= 10){ K=N; L=1; } else if(N <= 1000){ K = 1; while(K*K < N) K++; L = (N+K-1) / K; } else{ L = 1; while(L*L*L/50 < N) L++; K = (N+L-1) / L; } } bool operator==(Status r) const { return N == r.N && K == r.K && L == r.L; } }; Status stat; std::vector<Val> a; std::vector<Val> A; MultiplicativeConvolution(Status give_stat) : stat(give_stat), a(stat.K+1, 0), A(stat.L+1, 0){} static MyType Zeta(Status stat){ MyType res(stat); for(long long i=1; i<=stat.K; i++) res.a[i] = Val(1); for(long long i=1; i<=stat.L; i++) res.A[i] = Val(Div(stat.N,i)); return res; } static MyType Zeta1(Status stat){ MyType res(stat); Val inv2 = Val(1) / Val(2); for(long long i=1; i<=stat.K; i++) res.a[i] = Val(i); for(long long i=1; i<=stat.L; i++) res.A[i] = Val(Div(stat.N,i)) * Val(Div(stat.N,i)+1) * inv2; return res; } static MyType One(Status stat){ MyType res(stat); res.a[1] = Val(1); for(long long i=1; i<=stat.L; i++) res.A[i] = Val(1); return res; } MyType& operator+=(const MyType& r) { assert(this->stat == r.stat); for(long long i=1; i<=stat.K; i++) a[i] += r.a[i]; for(long long i=1; i<=stat.L; i++) A[i] += r.A[i]; return *this; } MyType operator+(const MyType& r) const { auto res = *this; return res += r; } MyType& operator-=(const MyType& r) { assert(this->stat == r.stat); for(long long i=1; i<=stat.K; i++) a[i] -= r.a[i]; for(long long i=1; i<=stat.L; i++) A[i] -= r.A[i]; return *this; } MyType operator-(const MyType& r) const { auto res = *this; return res -= r; } MyType operator*(const MyType& r) const { return mult(*this,r); } MyType& operator*=(const MyType& r) { return *this = mult(*this,r); } MyType operator/(const MyType& r) const { return div(*this,r); } MyType& operator/=(const MyType& r) { return *this = div(*this,r); } private: static MyType mult(const MyType& l, const MyType& r){ assert(l.stat == r.stat); long long N = l.stat.N, K = l.stat.K, L = l.stat.L; std::vector<Val> lFairy(K+1, 0); for(long long i=1; i<=K; i++) lFairy[i] = lFairy[i-1] + l.a[i]; std::vector<Val> rFairy(K+1, 0); for(long long i=1; i<=K; i++) rFairy[i] = rFairy[i-1] + r.a[i]; MyType res(l.stat); for(long long i=1; i<=K; i++) for(long long j=1; i*j<=K; j++) res.a[i*j] += l.a[i] * r.a[j]; for(long long c=L,C=Div(N,L),M=1; c>=1; --c){ // calc res.A[c] C = Div(N,c); while(M*M<C) M++; // M = ceil sqrt N/c Val AM = (M<=K ? lFairy[M] : l.A[Div(N,M)]); for(long long i=1; i<=M; i++) res.A[c] += l.a[i] * (c*i<=L ? r.A[c*i] : rFairy[Div(C,i)]); for(long long j=1; M*j<=C; j++) res.A[c] += r.a[j] * ((c*j<=L ? l.A[c*j] : lFairy[Div(C,j)]) - AM); } return res; } static MyType div(const MyType& l, const MyType& r){ Val AInv = Val(1) / Val(r.a[1]); assert(l.stat == r.stat); long long N = l.stat.N, K = l.stat.K, L = l.stat.L; MyType res(l.stat); for(long long i=1; i<=K; i++){ res.a[i] = (l.a[i] - res.a[i]) * AInv; for(long long j=2; i*j<=K; j++) res.a[i*j] += res.a[i] * r.a[j]; } std::vector<Val> resFairy(K+1, 0); for(long long i=1; i<=K; i++) resFairy[i] = resFairy[i-1] + res.a[i]; std::vector<Val> rFairy(K+1, 0); for(long long i=1; i<=K; i++) rFairy[i] = rFairy[i-1] + r.a[i]; for(long long c=L,C=Div(N,L),M=1; c>=1; --c){ // calc res.A[c] C = Div(N,c); while(M*M<C) M++; // M = ceil sqrt N/c Val AM = rFairy[M]; for(long long i=2; i<=M; i++) res.A[c] += r.a[i] * (c*i<=L ? res.A[c*i] : resFairy[Div(C,i)]); for(long long j=1; M*j<=C; j++) res.A[c] += res.a[j] * ((c*j<=L ? r.A[c*j] : rFairy[Div(C,j)]) - AM); res.A[c] = (l.A[c] - res.A[c]) * AInv; } return res; } }; } // namespace nachia #line 4 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\math\\enumerate-quotients.hpp" namespace nachia{ template<class Int = unsigned long long> std::vector<Int> EnumerateQuotients(Int N, bool doInsertZero){ std::vector<Int> res; if(doInsertZero) res.push_back(0); for(Int k=1; k*k<N; k++) res.push_back(k); int qp1 = res.size(); for(Int k=1; k*k<=N; k++) res.push_back(N/k); std::reverse(res.begin() + qp1, res.end()); return res; } } #line 5 "..\\Main.cpp" #include <iostream> #include <string> #line 9 "..\\Main.cpp" using namespace std; using i64 = long long; #define rep(i,n) for(int i=0; i<(int)(n); i++) const i64 INF = 1001001001001001001; pair<i64,i64> testcase(){ i64 N, K; cin >> N >> K; vector<i64> quotients = nachia::EnumerateQuotients<i64>(N, true); int numQ = quotients.size()-1; using Mf = nachia::MultiplicativeConvolution<i64>; auto mfstat = Mf::Status(N); Mf zeta = Mf::Zeta(mfstat); Mf mobius = Mf::One(mfstat) / zeta; vector<i64> mertensRaw(mfstat.K+1); for(i64 i=1; i<=mfstat.K; i++) mertensRaw[i] = mertensRaw[i-1] + mobius.a[i]; auto getMertens = [&](i64 n) -> i64 { if(n <= mfstat.K) return mertensRaw[n]; return mobius.A[N/n]; }; auto countFracs = [&]() -> i64 { i64 fracCnt = 0; rep(q,numQ){ i64 times = getMertens(quotients[q+1]) - getMertens(quotients[q]); i64 v = quotients[numQ-q]; i64 cnt = v * (v+1) / 2; fracCnt += times * cnt; } return fracCnt; }; i64 cntall = countFracs(); if(cntall * 2 - 1 < K) return {-1,-1}; if(cntall == K) return {1,1}; bool sw = false; if(cntall < K){ K = cntall*2 - K; sw = true; } auto srch = nachia::RationalNumberSearch(N); i64 a = 0, b = 0; i64 sqrtN = 1; while(sqrtN*sqrtN <= N) sqrtN++; sqrtN++; while(srch.hasNext()){ i64 ax = srch.getNext().first; i64 bx = srch.getNext().second; i64 fracCnt = 0; vector<i64> cntn(sqrtN+1); for(i64 i=1; i<=sqrtN; i++) cntn[i] = cntn[i-1] + i * ax / bx; rep(q,numQ){ i64 times = getMertens(quotients[q+1]) - getMertens(quotients[q]); i64 v = quotients[numQ-q]; i64 cnt = v <= sqrtN ? cntn[v] : nachia::FloorSumU64Signed(quotients[numQ-q]+1, bx, ax, 0); fracCnt += times * cnt; } if(K <= fracCnt){ a = ax; b = bx; } srch.give(fracCnt < K); } if(sw) swap(a, b); return {a,b}; } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); auto ans = testcase(); if(ans.first < 0) cout << "-1\n"; else cout << ans.first << '/' << ans.second << '\n'; return 0; }