結果

問題 No.314 ケンケンパ
ユーザー ngtkana
提出日時 2023-04-08 18:56:42
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 1 ms / 1,000 ms
コード長 26,686 bytes
コンパイル時間 13,142 ms
コンパイル使用メモリ 378,728 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-03 15:25:47
合計ジャッジ時間 11,830 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 17
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

use fp::F1000000007 as F;
use std::io::{stdin, BufRead};
fn main() {
let stdin = stdin();
let n = stdin
.lock()
.lines()
.next()
.unwrap()
.unwrap()
.parse::<usize>()
.unwrap();
let mut dp: [F; 3] = [fp!(0), fp!(1), fp!(0)];
for _ in 0..n - 1 {
dp = [dp[1] + dp[2], dp[0], dp[1]];
}
let ans = dp.iter().sum::<F>();
println!("{}", ans);
}
// fp {{{
#[allow(dead_code)]
mod fp {
use std::{
fmt::{Debug, Display},
hash::Hash,
iter::{once, repeat, successors, FromIterator, Product, Sum},
marker::PhantomData,
mem::{swap, take},
ops::{
Add, AddAssign, Deref, DerefMut, Div, DivAssign, Index, Mul, MulAssign, Neg, Sub,
SubAssign,
},
};
// TODO:
pub enum M1000000007 {}
impl Mod for M1000000007 {
const P: u64 = 1_000_000_007;
}
pub type F1000000007 = Fp<M1000000007>;
pub enum M998244353 {}
impl Mod for M998244353 {
const P: u64 = 998_244_353;
}
impl Fft for M998244353 {
const ROOT: u64 = 3;
}
pub type F998244353 = Fp<M998244353>;
pub type Fps998244353 = Fpsp<M998244353>;
pub enum M1012924417 {}
impl Mod for M1012924417 {
const P: u64 = 1_012_924_417;
}
impl Fft for M1012924417 {
const ROOT: u64 = 5;
}
pub type F1012924417 = Fp<M1012924417>;
pub type Fps1012924417 = Fpsp<M1012924417>;
pub enum M924844033 {}
impl Mod for M924844033 {
const P: u64 = 924_844_033;
}
impl Fft for M924844033 {
const ROOT: u64 = 5;
}
pub type F924844033 = Fp<M924844033>;
pub type Fps924844033 = Fpsp<M924844033>;
pub trait Mod {
const P: u64; // ……
}
pub trait Fft: Mod {
const ROOT: u64;
}
#[macro_export]
macro_rules! define_fp {
($p:expr) => {
$crate::define_fp! { $p; enum M; type F }
};
($p:expr, $root:expr) => {
$crate::define_fp! { $p, $root; enum M; type F; type Fps }
};
(
$p:expr;
$vism:vis enum $m:ident;
$visf:vis type $f:ident$(;)?
) => {
#[allow(dead_code)]
$vism enum $m {}
impl $crate::fp::Mod for $m {
const P: u64 = $p;
}
#[allow(dead_code)]
$visf type $f = $crate::fp::Fp<$m>;
};
(
$p:expr, $root:expr;
$vism:vis enum $m:ident;
$visf:vis type $f:ident;
$visfps:vis type $fps:ident$(;)?
) => {
$crate::define_fp! { $p; $vism enum $m; $visf type $f }
impl $crate::fp::Fft for $m {
const ROOT: u64 = $root;
}
#[allow(dead_code)]
$visfps type $fps = $crate::fp::Fpsp<$m>;
};
}
#[macro_export]
macro_rules! fp {
($value:expr; if $cond:expr) => {
if $cond {
fp!($value)
} else {
fp!(0)
}
};
($num:expr; $den:expr) => {
$crate::fp::Fp::from($num) / $crate::fp::Fp::from($den)
};
($value:expr) => {
$crate::fp::Fp::from($value)
};
}
#[macro_export]
macro_rules! fps {
() => (
$crate::fp::Fpsp(Vec::new())
);
($elem:expr; $n:expr) => (
$crate::Fpsp(vec![$crate::fp!($elem); $n])
);
($($x:expr),+ $(,)?) => (
$crate::Fpsp(vec![$($crate::fp!($x)),+])
);
}
pub struct Fp<M>(u64, PhantomData<fn() -> M>);
impl<M: Fft> Fp<M> {
pub const ROOT: Self = Self(M::ROOT, PhantomData);
}
impl<M: Mod> Fp<M> {
pub const P: u64 = M::P;
pub fn new(value: u64) -> Self {
Self(value % Self::P, PhantomData)
}
pub fn m1pow(pow: u32) -> Self {
Self(
match pow % 2 {
0 => 1,
1 => Self::P - 1,
_ => unreachable!(),
},
PhantomData,
)
}
pub fn value(self) -> u64 {
self.0
}
pub fn inv(self) -> Self {
if self.0 == 0 {
panic!("Cannot invert `0`.");
}
let mut x = Self::P as i64;
let mut y = self.0 as i64;
let mut u = 0;
let mut v = 1;
while y != 0 {
let q = x / y;
x -= y * q;
u -= v * q;
swap(&mut x, &mut y);
swap(&mut u, &mut v);
}
debug_assert_eq!(x, 1);
debug_assert_eq!(v.abs(), Self::P as i64);
debug_assert!(u.abs() < Self::P as i64);
if u < 0 {
u += Self::P as i64;
}
Self(u as u64, PhantomData)
}
pub fn pow(mut self, mut exp: u64) -> Self {
let mut res = Self(1, PhantomData);
if exp != 0 {
while exp != 1 {
if exp % 2 == 1 {
res *= self;
}
exp /= 2;
self *= self;
}
res *= self;
}
res
}
}
impl<M: Mod> Copy for Fp<M> {}
impl<M: Mod> Clone for Fp<M> {
fn clone(&self) -> Self {
Self(self.0, self.1)
}
}
impl<M: Mod> PartialEq for Fp<M> {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl<M: Mod> Display for Fp<M> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
Display::fmt(&self.0, f)
}
}
impl<M: Mod> Eq for Fp<M> {}
impl<M: Mod> Default for Fp<M> {
fn default() -> Self {
Self(0, PhantomData)
}
}
impl<M: Mod> Hash for Fp<M> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.hash(state)
}
}
impl<M: Mod> Debug for Fp<M> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
pub fn berlekamp_massey_fp(a: i64, p: i64) -> [i64; 2] {
let mut u0 = 0_i64;
let mut v0 = 1_i64;
let mut w0 = a * u0 + p * v0;
let mut u1 = 1_i64;
let mut v1 = 0_i64;
let mut w1 = a * u1 + p * v1;
while p <= w0 * w0 {
let q = w0 / w1;
u0 -= q * u1;
v0 -= q * v1;
w0 -= q * w1;
swap(&mut u0, &mut u1);
swap(&mut v0, &mut v1);
swap(&mut w0, &mut w1);
}
[w0, u0]
}
if self.0 == 0 {
return write!(f, "0");
}
let [mut num, mut den] = berlekamp_massey_fp(self.0 as i64, M::P as i64);
if den < 0 {
num = -num;
den = -den;
}
if den == 1 {
write!(f, "{}", num)
} else {
write!(f, "{}/{}", num, den)
}
}
}
macro_rules! impl_from_large_int {
($($T:ty), *$(,)?) => {$(
impl<M: Mod> From<$T> for Fp<M> {
fn from(x: $T) -> Self {
Self::new(x.rem_euclid(M::P as _) as u64)
}
}
)*}
}
impl_from_large_int! {
i8, i16, i32, i64,
u128, usize,
i128, isize,
}
macro_rules! impl_from_small_int {
($($T: ty), *$(,)?) => {$(
impl<M: Mod> From<$T> for Fp<M> {
fn from(x: $T) -> Self {
Self::new(x as u64)
}
}
)*}
}
impl_from_small_int! {
u8, u16, u32, u64, bool,
}
impl<M: Mod, T: Into<Fp<M>>> AddAssign<T> for Fp<M> {
fn add_assign(&mut self, rhs: T) {
self.0 += rhs.into().0;
if M::P <= self.0 {
self.0 -= M::P;
}
}
}
impl<M: Mod, T: Into<Fp<M>>> SubAssign<T> for Fp<M> {
fn sub_assign(&mut self, rhs: T) {
let rhs = rhs.into().0;
if self.0 < rhs {
self.0 += M::P;
}
self.0 -= rhs;
}
}
impl<M: Mod, T: Into<Fp<M>>> MulAssign<T> for Fp<M> {
fn mul_assign(&mut self, rhs: T) {
self.0 *= rhs.into().0;
self.0 %= Self::P;
}
}
#[allow(clippy::suspicious_op_assign_impl)]
impl<M: Mod, T: Into<Fp<M>>> DivAssign<T> for Fp<M> {
fn div_assign(&mut self, rhs: T) {
*self *= rhs.into().inv();
}
}
impl<M: Mod> Neg for Fp<M> {
type Output = Fp<M>;
fn neg(self) -> Self::Output {
if self.0 == 0 {
self
} else {
Self(Self::P - self.0, PhantomData)
}
}
}
impl<M: Mod> Neg for &Fp<M> {
type Output = Fp<M>;
fn neg(self) -> Self::Output {
-*self
}
}
macro_rules! fp_forward_ops {
($(
$trait:ident,
$trait_assign:ident,
$fn:ident,
$fn_assign:ident,
)*) => {$(
impl<M: Mod> $trait_assign<&Fp<M>> for Fp<M> {
fn $fn_assign(&mut self, rhs: &Fp<M>) {
self.$fn_assign(*rhs);
}
}
impl<M: Mod, T: Into<Fp<M>>> $trait<T> for Fp<M> {
type Output = Fp<M>;
fn $fn(mut self, rhs: T) -> Self::Output {
self.$fn_assign(rhs.into());
self
}
}
impl<M: Mod> $trait<&Fp<M>> for Fp<M> {
type Output = Fp<M>;
fn $fn(self, rhs: &Fp<M>) -> Self::Output {
self.$fn(*rhs)
}
}
impl<M: Mod, T: Into<Fp<M>>> $trait<T> for &Fp<M> {
type Output = Fp<M>;
fn $fn(self, rhs: T) -> Self::Output {
(*self).$fn(rhs.into())
}
}
impl<M: Mod> $trait<&Fp<M>> for &Fp<M> {
type Output = Fp<M>;
fn $fn(self, rhs: &Fp<M>) -> Self::Output {
(*self).$fn(*rhs)
}
}
)*};
}
fp_forward_ops! {
Add, AddAssign, add, add_assign,
Sub, SubAssign, sub, sub_assign,
Mul, MulAssign, mul, mul_assign,
Div, DivAssign, div, div_assign,
}
impl<M: Mod> Sum for Fp<M> {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::new(0), |b, x| b + x)
}
}
impl<M: Mod> Product for Fp<M> {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::new(1), |b, x| b * x)
}
}
impl<'a, M: Mod> Sum<&'a Self> for Fp<M> {
fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
iter.fold(Self::new(0), |b, x| b + x)
}
}
impl<'a, M: Mod> Product<&'a Self> for Fp<M> {
fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
iter.fold(Self::new(1), |b, x| b * x)
}
}
pub fn fact_iter<M: Mod>() -> impl Iterator<Item = Fp<M>> {
(1..).scan(Fp::new(1), |state, x| {
let ans = *state;
*state *= x;
Some(ans)
})
}
#[allow(clippy::missing_panics_doc)]
pub fn fact_build<M: Mod>(n: usize) -> FactTable<M> {
if n == 0 {
FactTable(Vec::new(), Vec::new())
} else {
let fact = fact_iter::<M>().take(n).collect::<Vec<_>>();
let mut fact_inv = vec![fact.last().unwrap().inv(); n];
(1..n).rev().for_each(|i| fact_inv[i - 1] = fact_inv[i] * i);
FactTable(fact, fact_inv)
}
}
#[derive(Clone, Debug, Default, Hash, PartialEq, Eq)]
pub struct FactTable<M: Mod>(pub Vec<Fp<M>>, pub Vec<Fp<M>>);
impl<M: Mod, I> Index<I> for FactTable<M>
where
Vec<Fp<M>>: Index<I>,
{
type Output = <Vec<Fp<M>> as Index<I>>::Output;
fn index(&self, index: I) -> &Self::Output {
&self.0[index]
}
}
impl<M: Mod> FactTable<M> {
pub fn binom(&self, n: usize, k: usize) -> Fp<M> {
assert!(n < self.0.len());
assert!(k <= n);
self.0[n] * self.1[k] * self.1[n - k]
}
pub fn binom2(&self, i: usize, j: usize) -> Fp<M> {
self.binom(i + j, i)
}
pub fn binom_inv(&self, n: u64, k: u64) -> Fp<M> {
let n = n as usize;
let k = k as usize;
assert!(n < self.0.len());
assert!(k <= n);
self.1[n] * self.0[k] * self.0[n - k]
}
pub fn binom_or_zero(&self, n: usize, k: isize) -> Fp<M> {
assert!(n < self.0.len());
if (0..=n as isize).contains(&k) {
self.binom(n, k as usize)
} else {
Fp::new(0)
}
}
}
pub fn binom_iter<M: Mod>() -> impl Iterator<Item = Vec<Fp<M>>> {
successors(Some(vec![Fp::new(1)]), |last| {
let mut crr = last.clone();
crr.push(Fp::new(0));
crr[1..].iter_mut().zip(last).for_each(|(x, &y)| *x += y);
Some(crr)
})
}
pub fn convolution<M: Fft>(mut a: Vec<Fp<M>>, mut b: Vec<Fp<M>>) -> Vec<Fp<M>> {
if a.is_empty() || b.is_empty() {
Vec::new()
} else {
let n = a.len() + b.len() - 1;
a.resize(n.next_power_of_two(), Fp::new(0));
b.resize(n.next_power_of_two(), Fp::new(0));
fft(&mut a);
fft(&mut b);
let mut c = a.into_iter().zip(b).map(|(x, y)| x * y).collect::<Vec<_>>();
ifft(&mut c);
c.truncate(n);
c
}
}
pub fn anymod_convolution<M: Mod>(a: &[Fp<M>], b: &[Fp<M>]) -> Vec<Fp<M>> {
type Fp1 = F998244353;
type Fp2 = F1012924417;
type Fp3 = F924844033;
let v1 = convolution(
a.iter().map(|&x| Fp1::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| Fp1::new(x.value())).collect::<Vec<_>>(),
);
let v2 = convolution(
a.iter().map(|&x| Fp2::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| Fp2::new(x.value())).collect::<Vec<_>>(),
);
let v3 = convolution(
a.iter().map(|&x| Fp3::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| Fp3::new(x.value())).collect::<Vec<_>>(),
);
v1.into_iter()
.zip(v2)
.zip(v3)
.map(|((e1, e2), e3)| {
let x1 = e1;
let x2 = (e2 - Fp2::new(x1.value())) * Fp2::new(Fp1::P).inv();
let x3 = ((e3 - Fp3::new(x1.value())) * Fp3::new(Fp1::P).inv()
- Fp3::new(x2.value()))
* Fp3::new(Fp2::P).inv();
Fp::new(x1.value())
+ Fp::new(x2.value()) * Fp::new(Fp1::P)
+ Fp::new(x3.value()) * Fp::new(Fp1::P) * Fp::new(Fp2::P)
})
.collect::<Vec<_>>()
}
pub fn ifft<M: Fft>(a: &mut [Fp<M>]) {
let n = a.len();
assert!(n.is_power_of_two());
let root = Fp::ROOT.pow((M::P - 1) / a.len() as u64);
let mut roots = successors(Some(root.inv()), |x| Some(x * x))
.take(n.trailing_zeros() as usize + 1)
.collect::<Vec<_>>();
roots.reverse();
let fourth = Fp::ROOT.pow((M::P - 1) / 4).inv();
let mut quarter = 1_usize;
if n.trailing_zeros() % 2 == 1 {
for a in a.chunks_mut(2) {
let x = a[0];
let y = a[1];
a[0] = x + y;
a[1] = x - y;
}
quarter = 2;
}
while quarter != n {
let fft_len = quarter * 4;
let root = roots[fft_len.trailing_zeros() as usize];
for a in a.chunks_mut(fft_len) {
let mut c = Fp::new(1);
for (((i, j), k), l) in (0..)
.zip(quarter..)
.zip(quarter * 2..)
.zip(quarter * 3..)
.take(quarter)
{
let c2 = c * c;
let x = a[i] + c2 * a[j];
let y = a[i] - c2 * a[j];
let z = c * (a[k] + c2 * a[l]);
let w = fourth * c * (a[k] - c2 * a[l]);
a[i] = x + z;
a[j] = y + w;
a[k] = x - z;
a[l] = y - w;
c *= root;
}
}
quarter = fft_len;
}
let d = Fp::from(a.len()).inv();
a.iter_mut().for_each(|x| *x *= d);
}
pub fn fft<M: Fft>(a: &mut [Fp<M>]) {
let n = a.len();
assert!(n.is_power_of_two());
let mut root = Fp::ROOT.pow((M::P - 1) / a.len() as u64);
let fourth = Fp::ROOT.pow((M::P - 1) / 4);
let mut fft_len = n;
while 4 <= fft_len {
let quarter = fft_len / 4;
for a in a.chunks_mut(fft_len) {
let mut c = Fp::new(1);
for (((i, j), k), l) in (0..)
.zip(quarter..)
.zip(quarter * 2..)
.zip(quarter * 3..)
.take(quarter)
{
let c2 = c * c;
let x = a[i] + a[k];
let y = a[j] + a[l];
let z = a[i] - a[k];
let w = fourth * (a[j] - a[l]);
a[i] = x + y;
a[j] = c2 * (x - y);
a[k] = c * (z + w);
a[l] = c2 * c * (z - w);
c *= root;
}
}
root *= root;
root *= root;
fft_len = quarter;
}
if fft_len == 2 {
for a in a.chunks_mut(2) {
let x = a[0];
let y = a[1];
a[0] = x + y;
a[1] = x - y;
}
}
}
pub struct Fpsp<M>(pub Vec<Fp<M>>);
impl<M: Fft> Fpsp<M> {
pub fn new() -> Self {
Self::default()
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub fn len(&self) -> usize {
self.0.len()
}
pub fn truncated(&self, len: usize) -> Self {
self.iter().copied().take(len).collect()
}
pub fn resized(&self, len: usize) -> Self {
self.iter()
.copied()
.chain(repeat(fp!(0)))
.take(len)
.collect()
}
pub fn derivative(&self) -> Self {
self.iter()
.enumerate()
.skip(1)
.map(|(i, &x)| fp!(i) * x)
.collect()
}
pub fn integral(&self) -> Self {
once(fp!(0))
.chain(self.iter().enumerate().map(|(i, &x)| x / fp!(i + 1)))
.collect()
}
pub fn inv(&self, precision: usize) -> Self {
assert!(
!self.is_empty() && self[0] != fp!(0),
"Cannot invert an FPS `0`"
);
newton_by(precision, self[0].inv(), |g, d| {
(-&g * self.truncated(d) + 2) * g
})
}
pub fn log(&self, precision: usize) -> Self {
assert!(
!self.is_empty() && self[0] == fp!(1),
"Cannot take a log of an FPS with constant term other than `1`"
);
(self.derivative().truncated(precision) * self.inv(precision))
.integral()
.resized(precision)
}
pub fn exp(&self, precision: usize) -> Self {
assert!(
!self.is_empty() && self[0] == fp!(0),
"Cannot take an exp of an FPS with constant term other than `0`"
);
newton_by(precision, fp!(1), |g, d| {
(self.truncated(d) + 1 - g.log(d)) * g
})
}
}
pub fn newton_by<M: Fft>(
precision: usize,
init: Fp<M>,
rec: impl Fn(Fpsp<M>, usize) -> Fpsp<M>,
) -> Fpsp<M> {
let mut ans = Fpsp(vec![init]);
while ans.len() != precision {
let d = ans.len() * 2;
ans = rec(ans, d).resized(d.min(precision))
}
ans
}
// HACK: Deref 使
impl<M: Fft> Deref for Fpsp<M> {
type Target = Vec<Fp<M>>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<M: Fft> DerefMut for Fpsp<M> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<M: Fft> Clone for Fpsp<M> {
fn clone(&self) -> Self {
Self(self.to_vec())
}
}
impl<M: Fft, T: Into<Fp<M>>> FromIterator<T> for Fpsp<M> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
Self(iter.into_iter().map(Into::into).collect())
}
}
impl<M: Fft> AddAssign<&Fpsp<M>> for Fpsp<M> {
fn add_assign(&mut self, rhs: &Fpsp<M>) {
self.0.iter_mut().zip(&rhs.0).for_each(|(x, &y)| *x += y);
if self.len() < rhs.len() {
self.0.extend(rhs.0[self.len()..].iter().copied());
}
}
}
impl<M: Fft> AddAssign<&Fp<M>> for Fpsp<M> {
fn add_assign(&mut self, rhs: &Fp<M>) {
if self.is_empty() {
self.0.push(*rhs);
} else {
self[0] += *rhs;
}
}
}
impl<M: Fft> SubAssign<&Fpsp<M>> for Fpsp<M> {
fn sub_assign(&mut self, rhs: &Fpsp<M>) {
self.0.iter_mut().zip(&rhs.0).for_each(|(x, &y)| *x -= y);
if self.len() < rhs.len() {
self.0.extend(rhs.0[self.len()..].iter().map(|&x| -x));
}
}
}
impl<M: Fft> SubAssign<&Fp<M>> for Fpsp<M> {
fn sub_assign(&mut self, rhs: &Fp<M>) {
if self.is_empty() {
self.0.push(-*rhs);
} else {
self[0] -= *rhs;
}
}
}
impl<M: Fft> Neg for Fpsp<M> {
type Output = Fpsp<M>;
fn neg(mut self) -> Self::Output {
self.0.iter_mut().for_each(|x| *x = -*x);
self
}
}
impl<M: Fft> Neg for &Fpsp<M> {
type Output = Fpsp<M>;
fn neg(self) -> Self::Output {
self.0.iter().map(|&x| -x).collect()
}
}
macro_rules! fps_forward_ops_borrow {
($(
$trait:ident,
$trait_assign: ident,
$fn:ident,
$fn_assign:ident,
)*) => {$(
impl<M: Fft> $trait_assign for Fpsp<M> {
fn $fn_assign(&mut self, rhs: Self) {
self.$fn_assign(&rhs)
}
}
impl<M: Fft, T: Into<Fp<M>>> $trait_assign<T> for Fpsp<M> {
fn $fn_assign(&mut self, rhs: T) {
self.$fn_assign(&rhs.into())
}
}
impl<M: Fft> $trait for Fpsp<M> {
type Output = Fpsp<M>;
fn $fn(mut self, rhs: Fpsp<M>) -> Self::Output {
self.$fn_assign(rhs);
self
}
}
impl<M: Fft> $trait<&Fpsp<M>> for Fpsp<M> {
type Output = Fpsp<M>;
fn $fn(mut self, rhs: &Fpsp<M>) -> Self::Output {
self.$fn_assign(rhs);
self
}
}
impl<M: Fft> $trait<&Fp<M>> for Fpsp<M> {
type Output = Fpsp<M>;
fn $fn(mut self, rhs: &Fp<M>) -> Self::Output {
self.$fn_assign(rhs);
self
}
}
impl<M: Fft, T: Into<Fp<M>>> $trait<T> for Fpsp<M> {
type Output = Fpsp<M>;
fn $fn(mut self, rhs: T) -> Self::Output {
self.$fn_assign(rhs);
self
}
}
)*};
}
fps_forward_ops_borrow! {
Add, AddAssign, add, add_assign,
Sub, SubAssign, sub, sub_assign,
}
impl<M: Fft> Mul<Fpsp<M>> for Fpsp<M> {
type Output = Fpsp<M>;
fn mul(self, rhs: Fpsp<M>) -> Self::Output {
Fpsp(convolution(self.0, rhs.0))
}
}
impl<M: Fft> MulAssign<&Fp<M>> for Fpsp<M> {
fn mul_assign(&mut self, rhs: &Fp<M>) {
self.0.iter_mut().for_each(|x| *x *= *rhs);
}
}
impl<M: Fft> MulAssign<Fpsp<M>> for Fpsp<M> {
fn mul_assign(&mut self, rhs: Fpsp<M>) {
*self = take(self).mul(rhs)
}
}
impl<M: Fft, T: Into<Fp<M>>> MulAssign<T> for Fpsp<M> {
fn mul_assign(&mut self, rhs: T) {
self.mul_assign(&rhs.into());
}
}
impl<M: Fft> Mul<&Fp<M>> for Fpsp<M> {
type Output = Fpsp<M>;
fn mul(mut self, rhs: &Fp<M>) -> Self::Output {
self.mul_assign(rhs);
self
}
}
impl<M: Fft, T: Into<Fp<M>>> Mul<T> for Fpsp<M> {
type Output = Fpsp<M>;
fn mul(mut self, rhs: T) -> Self::Output {
self.mul_assign(rhs);
self
}
}
impl<M: Fft> Debug for Fpsp<M> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl<M: Fft> PartialEq for Fpsp<M> {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl<M: Fft> Eq for Fpsp<M> {}
impl<M: Fft> Default for Fpsp<M> {
fn default() -> Self {
Self(Vec::new())
}
}
impl<M: Fft> Hash for Fpsp<M> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.hash(state)
}
}
}
// }}}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0