結果
問題 | No.2264 Gear Coloring |
ユーザー | 🍮かんプリン |
提出日時 | 2023-04-08 23:21:51 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 64 ms / 2,000 ms |
コード長 | 6,187 bytes |
コンパイル時間 | 1,954 ms |
コンパイル使用メモリ | 182,132 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-03 20:44:15 |
合計ジャッジ時間 | 2,999 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 3 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 11 ms
6,820 KB |
testcase_15 | AC | 3 ms
6,820 KB |
testcase_16 | AC | 64 ms
6,820 KB |
testcase_17 | AC | 3 ms
6,820 KB |
testcase_18 | AC | 3 ms
6,816 KB |
testcase_19 | AC | 5 ms
6,820 KB |
testcase_20 | AC | 2 ms
6,820 KB |
testcase_21 | AC | 2 ms
6,816 KB |
コンパイルメッセージ
main.cpp: In function 'int main()': main.cpp:214:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions] 214 | for (auto [p,e] : v) { | ^
ソースコード
/** * @FileName a.cpp * @Author kanpurin * @Created 2023.04.08 23:21:45 **/ #include "bits/stdc++.h" using namespace std; typedef long long ll; template< int MOD > struct mint { public: unsigned int x; mint() : x(0) {} mint(long long v) { long long w = (long long)(v % (long long)(MOD)); if (w < 0) w += MOD; x = (unsigned int)(w); } mint(std::string &s) { unsigned int z = 0; for (int i = 0; i < s.size(); i++) { z *= 10; z += s[i] - '0'; z %= MOD; } x = z; } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint& operator+=(const mint &a) { if ((x += a.x) >= MOD) x -= MOD; return *this; } mint& operator-=(const mint &a) { if ((x -= a.x) >= MOD) x += MOD; return *this; } mint& operator*=(const mint &a) { unsigned long long z = x; z *= a.x; x = (unsigned int)(z % MOD); return *this; } mint& operator/=(const mint &a) {return *this = *this * a.inv(); } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs.x == rhs.x; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs.x != rhs.x; } friend std::ostream& operator<<(std::ostream &os, const mint &n) { return os << n.x; } friend std::istream &operator>>(std::istream &is, mint &n) { unsigned int x; is >> x; n = mint(x); return is; } mint inv() const { assert(x); return pow(MOD-2); } mint pow(long long n) const { assert(0 <= n); mint p = *this, r = 1; while (n) { if (n & 1) r *= p; p *= p; n >>= 1; } return r; } mint sqrt() const { if (this->x < 2) return *this; if (this->pow((MOD-1)>>1).x != 1) return mint(0); mint b = 1, one = 1; while (b.pow((MOD-1) >> 1) == 1) b += one; long long m = MOD-1, e = 0; while (m % 2 == 0) m >>= 1, e += 1; mint x = this->pow((m - 1) >> 1); mint y = (*this) * x * x; x *= (*this); mint z = b.pow(m); while (y.x != 1) { int j = 0; mint t = y; while (t != one) j += 1, t *= t; z = z.pow(1LL << (e-j-1)); x *= z; z *= z; y *= z; e = j; } return x; } }; constexpr int MOD = 998244353; bool isprime(long long N) { if (N <= 1) return false; if (N == 2) return true; if (N % 2 == 0) return false; auto modpow = [](__int128_t a, long long n, long long mo) { __int128_t r = 1; a %= mo; while (n) r = r * ((n % 2) ? a : 1) % mo, a = a * a % mo, n >>= 1; return r; }; std::vector<long long> A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; long long s = 0, d = N - 1; while (d % 2 == 0) d >>= 1, s++; for (long long a : A) { if (a % N == 0) return true; long long j, r = modpow(a, d, N); if (r == 1) continue; for (j = 0; j < s; j++) { if (r == N - 1) break; r = __int128_t(r) * r % N; } if (j == s) return false; } return true; } long long PollardRho(long long N) { if (N % 2 == 0) return 2; long long m = 1LL<<(70-__builtin_clrsbll(N))/8; for (long long c = 1; c < N; c++) { auto f = [&](long long x) { return ((__int128_t)x*x+c)%N; }; long long x,y,g,q,r,k,ys; y = k = 0; g = q = r = 1; while (g == 1) { x = y; while(k < 3*r/4) { y = f(y); k += 1; } while(k < r && g == 1) { ys = y; for (int _ = 0; _ < min(m,r-k); _++) { y = f(y); q = (__int128_t)q*abs(x-y)%N; } g = __gcd(q,N); k += m; } k = r; r <<= 1; } if (g == N) { g = 1; y = ys; while(g == 1) { y = f(y); g = __gcd(abs(x-y),N); } } if (g == N) continue; if (isprime(g)) return g; else if (isprime(N/g)) return N/g; else return PollardRho(g); } return -1; } vector<pair<long long,int>> prime_factorization(long long N) { vector<pair<long long,int>> res; while(!isprime(N) && N > 1) { long long p = PollardRho(N); int cnt = 0; while(N%p==0) { N /= p; cnt++; } res.push_back({p,cnt}); } if (N > 1) res.push_back({N,1}); sort(res.begin(), res.end()); return res; } int main() { int n,m;cin >> n >> m; vector<int> a(n); int L = 1; for (int i = 0; i < n; i++) { cin >> a[i]; L = (ll)L * a[i] / __gcd(a[i],L); } auto v = prime_factorization(L); vector<int> divisor,euler; divisor.push_back(1); euler.push_back(1); for (auto [p,e] : v) { int sz = divisor.size(); for (int i = 0; i < e; i++) { for (int j = sz*i; j < sz*(i+1); j++) { divisor.push_back(divisor[j]*p); euler.push_back(euler[j]*(p-!i)); } } } mint<MOD> ans = 0; for (int i = 0; i < euler.size(); i++) { int d = L/divisor[i]; ll total = 0; for (int j = 0; j < n; j++) { total += __gcd(d,a[j]); } ans += mint<MOD>(m).pow(total)*euler[i]; } cout << ans/L << endl; return 0; }