結果
| 問題 |
No.2272 多項式乗算 mod 258280327
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2023-04-09 16:12:29 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 160 ms / 2,000 ms |
| コード長 | 5,912 bytes |
| コンパイル時間 | 1,232 ms |
| コンパイル使用メモリ | 81,708 KB |
| 最終ジャッジ日時 | 2025-02-12 04:14:46 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 33 |
ソースコード
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include <iostream>
#include <stdio.h>
#include <stdint.h>
#include <cassert>
using namespace std;
using ll = long long;
#define MAIN main
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n";
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
int MAIN()
{
UNTIE;
CEXPR( int , power3_max , 531441 ); // 400000を超える最小の3羃3^12
CEXPR( int , bound_deg , 200000 );
CEXPR( ll , bound_coef , 1000000000000000000 );
CEXPR( ll , P , 258280327 );
CIN_ASSERT( deg_F , 0 , bound_deg );
ll F[2][power3_max] = {};
ll ( &F0 )[power3_max] = F[0];
FOREQ( i , 0 , deg_F ){
CIN_ASSERT( F_i , 0 , bound_coef );
F0[i] = move( F_i );
}
CIN_ASSERT( deg_G , 0 , bound_deg );
ll G[2][power3_max] = {};
ll ( &G0 )[power3_max] = G[0];
FOREQ( i , 0 , deg_G ){
CIN_ASSERT( G_i , 0 , bound_coef );
G0[i] = move( G_i );
}
assert( deg_F > 0 ? F0[deg_F] > 0 : true );
assert( deg_G > 0 ? G0[deg_G] > 0 : true );
if( deg_F == 0 ){
if( F0[0] == 0 ){
COUT( 0 );
RETURN( 0 );
}
}
if( deg_G == 0 ){
if( G0[0] == 0 ){
COUT( 0 );
RETURN( 0 );
}
}
FOREQ( i , 0 , deg_F ){
F0[i] %= P;
}
FOREQ( i , 0 , deg_G ){
G0[i] %= P;
}
int deg_FG = deg_F + deg_G;
COUT( deg_FG );
while( F0[deg_F] == 0 && deg_F > 0 ){
deg_F--;
}
while( G0[deg_G] == 0 && deg_G > 0 ){
deg_G--;
}
constexpr const ll PRT[18] =
{
1 ,
216758952 ,
101467526 ,
192804416 ,
176579501 ,
103561696 ,
231369983 ,
149769107 ,
226314423 ,
92727751 ,
62159786 ,
188033136 ,
81607097 ,
60928536 ,
166970816 ,
33424748 ,
1331 ,
11
};
constexpr const ll IPRT[18] =
{
1 ,
41521374 ,
172512859 ,
90494136 ,
146243611 ,
250527318 ,
145009132 ,
221744278 ,
147702524 ,
152317402 ,
95581115 ,
192894340 ,
201944950 ,
228994089 ,
118233014 ,
114218248 ,
37063518 ,
93920119
};
int index_curr = 1;
int index_prev = 0;
ll PRT_e_power;
CEXPR( int , power3_max_prev , power3_max / 3 );
int power3[2] = { power3_max , power3_max_prev };
int i_q_lim[2] = { 1 , 3 };
int i_q_r;
CEXPR( int , exponent_max , 12 ); // log_3 power3_max
FOREQ( exponent , 1 , exponent_max ){
ll ( &F_curr )[power3_max] = F[index_curr];
ll ( &G_curr )[power3_max] = G[index_curr];
int& power3_curr = power3[index_curr];
int& i_q_lim_curr = i_q_lim[index_curr];
ll ( &F_prev )[power3_max] = F[index_prev];
ll ( &G_prev )[power3_max] = G[index_prev];
int& power3_prev = power3[index_prev];
int& i_q_lim_prev = i_q_lim[index_prev];
const ll& PRT_e = PRT[exponent];
PRT_e_power = 1;
FOR( i_q , 0 , i_q_lim_curr ){
i_q_r = i_q % i_q_lim_prev;
FOR( i_r , 0 , power3_curr ){
F_curr[ i_q * power3_curr + i_r ] =
(
F_prev[ i_q_r * power3_prev + i_r ] +
PRT_e_power * F_prev[ i_q_r * power3_prev + power3_curr + i_r ] +
( ( PRT_e_power * PRT_e_power ) % P ) * F_prev[ i_q_r * power3_prev + power3_curr + power3_curr + i_r ]
) % P;
G_curr[ i_q * power3_curr + i_r ] =
(
G_prev[ i_q_r * power3_prev + i_r ] +
PRT_e_power * G_prev[ i_q_r * power3_prev + power3_curr + i_r ] +
( ( PRT_e_power * PRT_e_power ) % P ) * G_prev[ i_q_r * power3_prev + power3_curr + power3_curr + i_r ]
) % P;
}
PRT_e_power = ( PRT_e_power * PRT_e ) % P;
}
power3_prev = power3_curr / 3;
i_q_lim_prev = i_q_lim_curr * 3;
swap( index_curr , index_prev );
}
{
ll ( &F_prev )[power3_max] = F[index_prev];
ll ( &G_prev )[power3_max] = G[index_prev];
FOR( i , 0 , power3_max ){
ll& F_prev_i = F_prev[i];
F_prev_i = ( F_prev_i * G_prev[i] ) % P;
}
}
power3[index_curr] = power3_max_prev;
power3[index_prev] = power3_max;
i_q_lim[index_curr] = 3;
i_q_lim[index_prev] = 1;
FOREQ( exponent , 1 , exponent_max ){
ll ( &F_curr )[power3_max] = F[index_curr];
int& power3_curr = power3[index_curr];
int& i_q_lim_curr = i_q_lim[index_curr];
ll ( &F_prev )[power3_max] = F[index_prev];
int& power3_prev = power3[index_prev];
int& i_q_lim_prev = i_q_lim[index_prev];
const ll& IPRT_e = IPRT[exponent];
PRT_e_power = 1;
FOR( i_q , 0 , i_q_lim_curr ){
i_q_r = i_q % i_q_lim_prev;
FOR( i_r , 0 , power3_curr ){
F_curr[ i_q * power3_curr + i_r ] =
(
F_prev[ i_q_r * power3_prev + i_r ] +
PRT_e_power * F_prev[ i_q_r * power3_prev + power3_curr + i_r ] +
( ( PRT_e_power * PRT_e_power ) % P ) * F_prev[ i_q_r * power3_prev + power3_curr + power3_curr + i_r ]
) % P;
}
PRT_e_power = ( PRT_e_power * IPRT_e ) % P;
}
power3_prev = power3_curr / 3;
i_q_lim_prev = i_q_lim_curr * 3;
swap( index_curr , index_prev );
}
CEXPR( ll , power3_max_inv , 258279841 );
ll ( &F_prev )[power3_max] = F[index_prev];
FOR( i , 0 , deg_FG ){
cout << ( F_prev[i] * power3_max_inv ) % P << " ";
}
RETURN( ( F_prev[deg_FG] * power3_max_inv ) % P );
}