結果
| 問題 |
No.103 素因数ゲーム リターンズ
|
| コンテスト | |
| ユーザー |
AC2K
|
| 提出日時 | 2023-04-10 17:05:15 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 5,000 ms |
| コード長 | 16,141 bytes |
| コンパイル時間 | 4,034 ms |
| コンパイル使用メモリ | 261,788 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-06 02:58:49 |
| 合計ジャッジ時間 | 4,157 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 20 |
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:13:42: warning: 'grundy' is used uninitialized [-Wuninitialized]
13 | constexpr ld eps = 1e-6;
| ^
main.cpp:9:9: note: 'grundy' declared here
9 | using graph = std::vector<std::vector<int>>;
| ^~~~~~
ソースコード
#line 2 "library/src/template.hpp"
#include<bits/stdc++.h>
#define rep(i, N) for (int i = 0; i < (N); i++)
#define all(x) (x).begin(),(x).end()
#define popcount(x) __builtin_popcount(x)
using i128=__int128_t;
using ll = long long;
using ld = long double;
using graph = std::vector<std::vector<int>>;
using P = std::pair<int, int>;
constexpr int inf = 1e9;
constexpr ll infl = 1e18;
constexpr ld eps = 1e-6;
const long double pi = acos(-1);
constexpr uint64_t MOD = 1e9 + 7;
constexpr uint64_t MOD2 = 998244353;
constexpr int dx[] = { 1,0,-1,0 };
constexpr int dy[] = { 0,1,0,-1 };
template<class T>constexpr inline void chmax(T&x,T y){if(x<y)x=y;}
template<class T>constexpr inline void chmin(T&x,T y){if(x>y)x=y;}
#line 4 "library/src/math/gcd.hpp"
namespace kyopro {
template <typename T> constexpr T _gcd(T a, T b) {
assert(a >= 0 && b >= 0);
if (a == 0 || b == 0) return a + b;
int d = std::min<T>(__builtin_ctzll(a), __builtin_ctzll(b));
a >>= __builtin_ctzll(a), b >>= __builtin_ctzll(b);
while (a != b) {
if (a == 0 || b == 0) {
return a + b;
}
if (a > b) {
a -= b;
a >>= __builtin_ctzll(a);
} else {
b -= a;
b >>= __builtin_ctzll(b);
}
}
return a << d;
}
template <typename T> constexpr T ext_gcd(T a, T b, T& x, T& y) {
x = 1, y = 0;
T nx = 0, ny = 1;
while (b) {
T q = a / b;
std::tie(a, b) = std::pair<T, T>{b, a % b};
std::tie(x, nx) = std::pair<T, T>{nx, x - nx * q};
std::tie(y, ny) = std::pair<T, T>{ny, y - ny * q};
}
return a;
}
}; // namespace kyopro
#line 2 "library/src/internal/barrett.hpp"
namespace kyopro {
namespace internal {
/// @brief barrett reduction
class barrett {
using u32 = uint32_t;
using u64 = uint64_t;
u64 m;
u64 im;
public:
explicit barrett() = default;
explicit barrett(u64 m_)
: m(m_), im((u64)(long double)static_cast<u64>(-1) / m_ + 1) {}
inline u64 get_mod() const { return m; }
constexpr u64 reduce(int64_t a) const {
if (a < 0) return m - reduce(-a);
u64 q = ((__uint128_t)a * im) >> 64;
a -= m * q;
if (a >= m) a -= m;
return a;
}
constexpr u64 mul(u64 a, u64 b) const {
if (a == 0 || b == 0) {
return 0;
}
u64 z = a;
z *= b;
u64 x = (u64)(((__uint128_t)z * im) >> 64);
u32 v = (u32)(z - x * m);
if (v >= m) v += m;
return v;
}
};
}; // namespace internal
}; // namespace kyopro
#line 6 "library/src/internal/type_traits.hpp"
namespace kyopro {
namespace internal {
/// @ref https://qiita.com/kazatsuyu/items/f8c3b304e7f8b35263d8
template <typename... Args> struct first_enabled {};
template <typename T, typename... Args>
struct first_enabled<std::enable_if<true, T>, Args...> {
using type = T;
};
template <typename T, typename... Args>
struct first_enabled<std::enable_if<false, T>, Args...>
: first_enabled<Args...> {};
template <typename T, typename... Args> struct first_enabled<T, Args...> {
using type = T;
};
template <typename... Args>
using first_enabled_t = typename first_enabled<Args...>::type;
template <int dgt> struct int_least {
static_assert(dgt <= 128, "digit have to be less or equals to 128");
using type = first_enabled_t<std::enable_if<dgt <= 8, __int8_t>,
std::enable_if<dgt <= 16, __int16_t>,
std::enable_if<dgt <= 32, __int32_t>,
std::enable_if<dgt <= 64, __int64_t>,
std::enable_if<dgt <= 128, __int128_t> >;
};
template <int dgt> struct uint_least {
static_assert(dgt <= 128, "digit have to be less or equals to 128");
using type = first_enabled_t<std::enable_if<dgt <= 8, __uint8_t>,
std::enable_if<dgt <= 16, __uint16_t>,
std::enable_if<dgt <= 32, __uint32_t>,
std::enable_if<dgt <= 64, __uint64_t>,
std::enable_if<dgt <= 128, __uint128_t> >;
};
template <int dgt> using int_least_t = typename int_least<dgt>::type;
template <int dgt> using uint_least_t = typename uint_least<dgt>::type;
template <typename T>
using double_size_uint_t = uint_least_t<2 * std::numeric_limits<T>::digits>;
template <typename T>
using double_size_int_t = int_least_t<2 * std::numeric_limits<T>::digits>;
}; // namespace internal
}; // namespace kyopro
#line 6 "library/src/internal/montgomery.hpp"
namespace kyopro {
namespace internal {
using u32 = uint32_t;
using u64 = uint64_t;
using i32 = int32_t;
using i64 = int64_t;
using u128 = __uint128_t;
using i128 = __int128_t;
/// @brief MontgomeryReduction
template <typename T> class Montgomery {
static constexpr int lg = std::numeric_limits<T>::digits;
using LargeT = internal::double_size_uint_t<T>;
T mod, r, r2, minv;
T calc_inv() {
T t = 0, res = 0;
for (int i = 0; i < lg; i++) {
if (~t & 1) {
t += mod;
res += static_cast<T>(1) << i;
}
t >>= 1;
}
return res;
}
public:
Montgomery() = default;
constexpr inline T get_mod() { return mod; }
constexpr inline int get_lg() { return lg; }
void set_mod(const T& m) {
assert(m > 0);
assert(m & 1);
mod = m;
r = (-static_cast<T>(mod)) % mod;
r2 = (-static_cast<LargeT>(mod)) % mod;
minv = calc_inv();
}
T reduce(LargeT x) const {
u64 res =
(x + static_cast<LargeT>(static_cast<T>(x) * minv) * mod) >> lg;
if (res >= mod) res -= mod;
return res;
}
inline T generate(LargeT x) { return reduce(x * r2); }
inline T mult(T x, T y) { return reduce((LargeT)x * y); }
};
}; // namespace internal
}; // namespace kyopro
#line 6 "library/src/math/dynamic_modint.hpp"
namespace kyopro {
/// @note mod は32bitじゃないとバグる
template <int id = -1>
class barrett_modint {
using u32 = uint32_t;
using u64 = uint64_t;
using i32 = int32_t;
using i64 = int64_t;
using br = internal::barrett;
static br brt;
static u32 mod;
u32 v; // value
public:
static inline void set_mod(u32 mod_) {
brt = br(mod_);
mod = mod_;
}
public:
explicit constexpr barrett_modint() : v(0) {
assert(mod);
} // modが決定済みである必要がある
explicit constexpr barrett_modint(i64 v_) : v(brt.reduce(v_)) {
assert(mod);
}
u32 val() const { return v; }
static u32 get_mod() { return mod; }
using mint = barrett_modint<id>;
// operators
constexpr mint& operator=(i64 r) {
v = brt.reduce(r);
return (*this);
}
constexpr mint& operator+=(const mint& r) {
v += r.v;
if (v >= mod) {
v -= mod;
}
return (*this);
}
constexpr mint& operator-=(const mint& r) {
v += mod - r.v;
if (v >= mod) {
v -= mod;
}
return (*this);
}
constexpr mint& operator*=(const mint& r) {
v = brt.mul(v, r.v);
return (*this);
}
constexpr mint operator+(const mint& r) const { return mint(*this) += r; }
constexpr mint operator-(const mint& r) const { return mint(*this) -= r; }
constexpr mint operator*(const mint& r) const { return mint(*this) *= r; }
constexpr mint& operator+=(i64 r) { return (*this) += mint(r); }
constexpr mint& operator-=(i64 r) { return (*this) -= mint(r); }
constexpr mint& operator*=(i64 r) { return (*this) *= mint(r); }
friend mint operator+(i64 l, const mint& r) { return mint(l) += r; }
friend mint operator+(const mint& l, i64 r) { return mint(l) += r; }
friend mint operator-(i64 l, const mint& r) { return mint(l) -= r; }
friend mint operator-(const mint& l, i64 r) { return mint(l) -= r; }
friend mint operator*(i64 l, const mint& r) { return mint(l) *= r; }
friend mint operator*(const mint& l, i64 r) { return mint(l) += r; }
friend std::ostream& operator<<(std::ostream& os, const mint& mt) {
os << mt.val();
return os;
}
friend std::istream& operator>>(std::istream& is, mint& mt) {
i64 v_;
is >> v_;
mt = v_;
return is;
}
template <typename T> mint pow(T e) const {
mint res(1), base(*this);
while (e) {
if (e & 1) {
res *= base;
}
e >>= 1;
base *= base;
}
return res;
}
inline mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint& r) { return (*this) *= r.inv(); }
mint operator/(const mint& r) const { return mint(*this) *= r.inv(); }
mint& operator/=(i64 r) { return (*this) /= mint(r); }
friend mint operator/(const mint& l, i64 r) { return mint(l) /= r; }
friend mint operator/(i64 l, const mint& r) { return mint(l) /= r; }
};
}; // namespace kyopro
template <int id>
typename kyopro::barrett_modint<id>::u32 kyopro::barrett_modint<id>::mod;
template <int id>
typename kyopro::barrett_modint<id>::br kyopro::barrett_modint<id>::brt;
namespace kyopro {
template <typename T, int id = -1>
class dynamic_modint {
using LargeT = internal::double_size_uint_t<T>;
static T mod;
static internal::Montgomery<T> mr;
public:
static void inline set_mod(T mod_) {
mr.set_mod(mod_);
mod = mod_;
}
static inline T get_mod() { return mod; }
private:
T v;
public:
dynamic_modint(T v_ = 0) {
assert(mod);
v = mr.generate(v_);
}
inline T val() const { return mr.reduce(v); }
using mint = dynamic_modint<T, id>;
mint& operator+=(const mint& r) {
v += r.v;
if (v >= mr.get_mod()) {
v -= mr.get_mod();
}
return (*this);
}
mint& operator-=(const mint& r) {
v += mr.get_mod() - r.v;
if (v >= mr.get_mod) {
v -= mr.get_mod();
}
return (*this);
}
mint& operator*=(const mint& r) {
v = mr.mult(v, r.v);
return (*this);
}
mint operator+(const mint& r) { return mint(*this) += r; }
mint operator-(const mint& r) { return mint(*this) -= r; }
mint operator*(const mint& r) { return mint(*this) *= r; }
mint& operator=(const T& v_) {
(*this) = mint(v_);
return (*this);
}
friend std::ostream& operator<<(std::ostream& os, const mint& mt) {
os << mt.val();
return os;
}
friend std::istream& operator>>(std::istream& is, mint& mt) {
T v_;
is >> v_;
mt = v_;
return is;
}
template <typename P> mint pow(P e) const {
assert(e >= 0);
mint res(1), base(*this);
while (e) {
if (e & 1) {
res *= base;
}
e >>= 1;
base *= base;
}
return res;
}
mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint& r) { return (*this) *= r.inv(); }
mint operator/(const mint& r) const { return mint(*this) *= r.inv(); }
mint& operator/=(T r) { return (*this) /= mint(r); }
friend mint operator/(const mint& l, T r) { return mint(l) /= r; }
friend mint operator/(T l, const mint& r) { return mint(l) /= r; }
};
}; // namespace kyopro
template <typename T, int id>
T kyopro::dynamic_modint<T, id>::mod;
template <typename T, int id>
kyopro::internal::Montgomery<T>
kyopro::dynamic_modint<T, id>::mr;
/// @brief dynamic modint(動的modint)
/// @docs docs/math/dynamic_modint.md
#line 3 "library/src/math/miller.hpp"
namespace kyopro {
namespace miller {
using i128 = __int128_t;
using u128 = __uint128_t;
using u64 = uint64_t;
using u32 = uint32_t;
template <typename mint>
bool inline miller_rabin(u64 n, const u64 bases[], int length) {
u64 d = n - 1;
while (~d & 1) {
d >>= 1;
}
u64 rev = n - 1;
if (mint::get_mod() != n) {
mint::set_mod(n);
}
for (int i = 0; i < length; i++) {
u64 a = bases[i];
if (n <= a) {
return true;
}
u64 t = d;
mint y = mint(a).pow(t);
while (t != n - 1 && y.val() != 1 && y.val() != rev) {
y *= y;
t <<= 1;
}
if (y.val() != rev && (~t & 1)) return false;
}
return true;
}
constexpr u64 bases_int[3] = {2, 7, 61}; // intだと、2,7,61で十分
constexpr u64 bases_ll[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
/// @brief MillerRabinの素数判定
constexpr bool is_prime(u64 n) {
if (n < 2) {
return false;
} else if (n == 2) {
return true;
} else if (~n & 1) {
return false;
}
if (n < (1ul << 31)) {
return miller_rabin<barrett_modint<-1>>(n, bases_int, 3);
} else {
return miller_rabin<dynamic_modint<u64, -1>>(n, bases_ll, 7);
}
}
}; // namespace miller
}; // namespace kyopro
#line 6 "library/src/math/rho.hpp"
namespace kyopro {
///@brief 高速素因数分解(Pollard Rho法)
namespace rho {
using namespace std;
using i128 = __int128_t;
using u128 = __uint128_t;
using u64 = uint64_t;
using u32 = uint32_t;
template <typename mint> u64 find_factor(u64 n) {
static u64 v = 20001;
if (~n & 1uL) {
return 2;
}
if (kyopro::miller::is_prime(n)) {
return n;
}
if (mint::get_mod() != n) {
mint::set_mod(n);
}
while (1) {
v ^= v << 13, v ^= v >> 7, v ^= v << 17;
u64 c = v;
auto f = [&](mint x) -> mint { return x.pow(2) + c; };
v ^= v << 13, v ^= v >> 7, v ^= v << 17;
mint x = v;
mint y = f(x);
u64 d = 1;
while (d == 1) {
d = _gcd<long long>(abs((long long)x.val() - (long long)y.val()),
n);
x = f(x);
y = f(f(y));
}
if (1 < d && d < n) {
return d;
}
}
exit(0);
}
template <typename mint> std::vector<u64> rho_fact(u64 n) {
if (n < 2) {
return {};
}
if (kyopro::miller::is_prime(n)) {
return {n};
}
std::vector<u64> v;
std::vector<u64> st{n};
while (st.size()) {
u64& m = st.back();
if (kyopro::miller::is_prime(m)) {
v.emplace_back(m);
st.pop_back();
} else {
u64 d = find_factor<mint>(m);
m /= d;
st.emplace_back(d);
}
}
return v;
}
inline std::vector<u64> factorize(u64 n) {
if (n < 2) {
return {};
}
auto v = (n < (1uL << 31) ? rho_fact<dynamic_modint<u32>>(n)
: rho_fact<dynamic_modint<u64>>(n));
std::sort(v.begin(), v.end());
return v;
}
std::vector<pair<u64, int>> exp_factorize(u64 n) {
std::vector<u64> pf = factorize(n);
if (pf.empty()) {
return {};
}
vector<pair<u64, int>> res;
res.emplace_back(pf.front(), 1);
for (int i = 1; i < (int)pf.size(); i++) {
if (res.back().first == pf[i]) {
res.back().second++;
} else {
res.emplace_back(pf[i], 1);
}
}
return res;
}
}; // namespace rho
}; // namespace kyopro
#line 3 "main.cpp"
int main(){
int m;
scanf("%d", &m);
int xor_sum = 0;
constexpr int NIM_MAX = 30;
int grundy[NIM_MAX + 1];
for (int i = 1; i <= NIM_MAX; i++) {
int transit = 0;
if (i >= 1) {
transit |= (1 << grundy[i - 1]);
}
if (i >= 2) {
transit |= (1 << grundy[i - 2]);
}
grundy[i] = __builtin_ctz(~transit);
}
rep(i, m) {
int n;
scanf("%d", &n);
auto pf = kyopro::rho::exp_factorize(n);
for (const auto&[p,e]:pf){
xor_sum ^= grundy[e];
}
}
if (!xor_sum) {
puts("Bob");
} else {
puts("Alice");
}
}
AC2K