結果
問題 | No.889 素数! |
ユーザー | McGregorsh |
提出日時 | 2023-04-13 22:45:26 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 159 ms / 2,000 ms |
コード長 | 12,676 bytes |
コンパイル時間 | 425 ms |
コンパイル使用メモリ | 81,904 KB |
実行使用メモリ | 91,456 KB |
最終ジャッジ日時 | 2024-10-09 18:47:17 |
合計ジャッジ時間 | 12,099 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 148 ms
91,216 KB |
testcase_01 | AC | 145 ms
91,308 KB |
testcase_02 | AC | 149 ms
91,260 KB |
testcase_03 | AC | 149 ms
91,264 KB |
testcase_04 | AC | 151 ms
91,240 KB |
testcase_05 | AC | 148 ms
91,068 KB |
testcase_06 | AC | 148 ms
91,232 KB |
testcase_07 | AC | 156 ms
91,020 KB |
testcase_08 | AC | 153 ms
91,368 KB |
testcase_09 | AC | 151 ms
91,180 KB |
testcase_10 | AC | 152 ms
91,132 KB |
testcase_11 | AC | 148 ms
91,152 KB |
testcase_12 | AC | 145 ms
90,972 KB |
testcase_13 | AC | 152 ms
90,952 KB |
testcase_14 | AC | 148 ms
91,192 KB |
testcase_15 | AC | 148 ms
90,984 KB |
testcase_16 | AC | 150 ms
91,128 KB |
testcase_17 | AC | 151 ms
91,252 KB |
testcase_18 | AC | 147 ms
91,364 KB |
testcase_19 | AC | 153 ms
91,356 KB |
testcase_20 | AC | 148 ms
91,244 KB |
testcase_21 | AC | 150 ms
91,168 KB |
testcase_22 | AC | 149 ms
90,948 KB |
testcase_23 | AC | 147 ms
91,008 KB |
testcase_24 | AC | 146 ms
91,192 KB |
testcase_25 | AC | 148 ms
91,236 KB |
testcase_26 | AC | 150 ms
91,060 KB |
testcase_27 | AC | 150 ms
91,276 KB |
testcase_28 | AC | 150 ms
91,196 KB |
testcase_29 | AC | 159 ms
90,892 KB |
testcase_30 | AC | 150 ms
91,252 KB |
testcase_31 | AC | 152 ms
91,104 KB |
testcase_32 | AC | 151 ms
91,240 KB |
testcase_33 | AC | 152 ms
91,216 KB |
testcase_34 | AC | 151 ms
91,412 KB |
testcase_35 | AC | 150 ms
91,224 KB |
testcase_36 | AC | 148 ms
91,404 KB |
testcase_37 | AC | 149 ms
91,156 KB |
testcase_38 | AC | 147 ms
91,252 KB |
testcase_39 | AC | 150 ms
91,264 KB |
testcase_40 | AC | 150 ms
91,276 KB |
testcase_41 | AC | 147 ms
91,192 KB |
testcase_42 | AC | 148 ms
91,372 KB |
testcase_43 | AC | 148 ms
91,192 KB |
testcase_44 | AC | 149 ms
90,872 KB |
testcase_45 | AC | 147 ms
91,224 KB |
testcase_46 | AC | 152 ms
91,304 KB |
testcase_47 | AC | 149 ms
91,280 KB |
testcase_48 | AC | 147 ms
90,972 KB |
testcase_49 | AC | 149 ms
91,084 KB |
testcase_50 | AC | 151 ms
91,164 KB |
testcase_51 | AC | 149 ms
91,008 KB |
testcase_52 | AC | 149 ms
91,016 KB |
testcase_53 | AC | 146 ms
91,188 KB |
testcase_54 | AC | 147 ms
91,160 KB |
testcase_55 | AC | 150 ms
91,264 KB |
testcase_56 | AC | 150 ms
91,220 KB |
testcase_57 | AC | 152 ms
91,264 KB |
testcase_58 | AC | 147 ms
91,188 KB |
testcase_59 | AC | 149 ms
91,256 KB |
testcase_60 | AC | 148 ms
91,288 KB |
testcase_61 | AC | 148 ms
91,080 KB |
testcase_62 | AC | 150 ms
91,268 KB |
testcase_63 | AC | 148 ms
91,456 KB |
ソースコード
###順序付き多重集合### import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans ###セグメントツリー### #####segfunc##### def segfunc(x, y): return x + y # 最小値 min(x, y) # 最大値 max(x, y) # 区間和 x + y # 区間積 x * y # 最大公約数 math.gcd(x, y) # 排他的論理和 x ^ y ################# #####ide_ele##### ide_ele = 0 # 最小値 float('inf') # 最大値 -float('inf') # 区間和 0 # 区間積 1 # 最大公約数 0 # 排他的論理和 0 ################# class SegTree: """ init(init_val, ide_ele): 配列init_valで初期化 O(N) update(k, x): k番目の値をxに更新 O(logN) query(l, r): 区間[l, r)をsegfuncしたものを返す O(logN) """ def __init__(self, init_val, segfunc, ide_ele): """ init_val: 配列の初期値 segfunc: 区間にしたい操作 ide_ele: 単位元 n: 要素数 num: n以上の最小の2のべき乗 tree: セグメント木(1-index) """ n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num # 配列の値を葉にセット for i in range(n): self.tree[self.num + i] = init_val[i] # 構築していく for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def update(self, k, x): """ k番目の値をxに更新 k: index(0-index) x: update value """ k += self.num self.tree[k] = x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def query(self, l, r): """ [l, r)のsegfuncしたものを得る l: index(0-index) r: index(0-index) """ res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r - 1]) l >>= 1 r >>= 1 return res ###UnionFind### class UnionFind: """0-indexed""" def __init__(self, n): self.n = n self.parent = [-1] * n self.__group_count = n # 辺がないとき、連結成分はn個あります def unite(self, x, y): """xとyをマージ""" x = self.root(x) y = self.root(y) if x == y: return 0 self.__group_count -= 1 # 木と木が合体するので、連結成分数が1減ります if self.parent[x] > self.parent[y]: x, y = y, x self.parent[x] += self.parent[y] self.parent[y] = x return self.parent[x] def is_same(self, x, y): """xとyが同じ連結成分か判定""" return self.root(x) == self.root(y) def root(self, x): """xの根を取得""" if self.parent[x] < 0: return x else: self.parent[x] = self.root(self.parent[x]) return self.parent[x] def size(self, x): """xが属する連結成分のサイズを取得""" return -self.parent[self.root(x)] def all_sizes(self) -> List[int]: """全連結成分のサイズのリストを取得 O(N) """ sizes = [] for i in range(self.n): size = self.parent[i] if size < 0: sizes.append(-size) return sizes def groups(self) -> List[List[int]]: """全連結成分の内容のリストを取得 O(N・α(N))""" groups = dict() for i in range(self.n): p = self.root(i) if not groups.get(p): groups[p] = [] groups[p].append(i) return list(groups.values()) def group_count(self) -> int: """連結成分の数を取得 O(1)""" return self.__group_count # 変数を返すだけなので、O(1)です ###素因数分解### def prime_factorize(n: int) -> list: return_list = [] while n % 2 == 0: return_list.append(2) n //= 2 f = 3 while f * f <= n: if n % f == 0: return_list.append(f) n //= f else: f += 2 if n != 1: return_list.append(n) return return_list ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return str_n[::-1] ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr ###組合せMOD### def comb(n,k): nCk = 1 MOD = 10**9+7 for i in range(n-k+1, n+1): nCk *= i nCk %= MOD for i in range(1,k+1): nCk *= pow(i,MOD-2,MOD) nCk %= MOD return nCk ###回転行列### def RotationMatrix(before_x, before_y, d): d = math.radians(d) new_x = before_x * math.cos(d) - before_y * math.sin(d) new_y = before_x * math.sin(d) + before_y * math.cos(d) return new_x, new_y ###ダイクストラ### def daikusutora(N, G, s): dist = [INF] * N que = [(0, s)] dist[s] = 0 while que: c, v = heappop(que) if dist[v] < c: continue for t, cost in G[v]: if dist[v] + cost < dist[t]: dist[t] = dist[v] + cost heappush(que, (dist[t], t)) return dist import sys, re from fractions import Fraction from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext, ROUND_HALF_UP def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d def rotate(table): n_fild = [] for x in zip(*table[::-1]): n_fild.append(x) return n_fild sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 def is_prime(n): if n < 2: return False i = 2 while i * i <= n: if n % i == 0: return False i += 1 return True def main(): N = int(input()) if N == 0: print(0) exit() if is_prime(N): print('Sosu!') exit() else: for i in range(2, 10): if i * i == N: print('Heihosu!') exit() if i ** 3 == N: print('Ripposu!') exit() nums = make_divisors(N) nums.sort() if sum(nums[:-1]) == N: print('Kanzensu!') exit() print(N) if __name__ == '__main__': main()