結果
問題 | No.2272 多項式乗算 mod 258280327 |
ユーザー | siganai |
提出日時 | 2023-04-14 22:21:17 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 17,021 bytes |
コンパイル時間 | 3,389 ms |
コンパイル使用メモリ | 235,444 KB |
実行使用メモリ | 16,160 KB |
最終ジャッジ日時 | 2024-10-10 13:14:02 |
合計ジャッジ時間 | 6,548 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 4 ms
5,248 KB |
testcase_25 | AC | 13 ms
5,248 KB |
testcase_26 | AC | 12 ms
5,248 KB |
testcase_27 | AC | 25 ms
5,248 KB |
testcase_28 | AC | 26 ms
5,248 KB |
testcase_29 | AC | 116 ms
9,600 KB |
testcase_30 | AC | 238 ms
16,032 KB |
testcase_31 | AC | 232 ms
16,160 KB |
testcase_32 | AC | 236 ms
16,084 KB |
ソースコード
#line 1 "main.cpp" //#pragma GCC target("avx") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> #ifdef LOCAL #include <debug.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif using namespace std; using ll = long long; using ld = long double; using pll = pair<ll, ll>; using pii = pair<int, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vpii = vector<pii>; using vpll = vector<pll>; using vs = vector<string>; template<class T> using pq = priority_queue<T, vector<T>, greater<T>>; #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(a,b,c,name,...) name #define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER) #define rep2(i, n) for (ll i = 0; i < (n); ++i) #define rep3(i, a, b) for (ll i = (a); i < (b); ++i) #define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) for(ll i = (n) - 1;i >= 0;i--) #define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--) #define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--) #define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define all1(i) begin(i) , end(i) #define all2(i,a) begin(i) , begin(i) + a #define all3(i,a,b) begin(i) + a , begin(i) + b #define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__) #define sum(...) accumulate(all(__VA_ARGS__),0LL) template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; } template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; } template<class T> auto min(const T& a){ return *min_element(all(a)); } template<class T> auto max(const T& a){ return *max_element(all(a)); } template<class... Ts> void in(Ts&... t); #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; in(__VA_ARGS__) #define STR(...) string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; in(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) vector<type> name(size); in(name) #define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name) ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;} ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } ll GCD(ll a,ll b) { if(a == 0 || b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);} ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;} namespace IO{ #define VOID(a) decltype(void(a)) struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(30);}} setting; template<int I> struct P : P<I-1>{}; template<> struct P<0>{}; template<class T> void i(T& t){ i(t, P<3>{}); } void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; } template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; } template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); } template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){ in(get<idx>(t)...);} template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ ituple(t, make_index_sequence<tuple_size<T>::value>{});} #undef VOID } #define unpack(a) (void)initializer_list<int>{(a, 0)...} template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); } #undef unpack static const double PI = 3.1415926535897932; template <class F> struct REC { F f; REC(F &&f_) : f(forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }}; //constexpr int mod = 1000000007; constexpr int mod = 998244353; #line 2 "library/modint/LazyMontgomeryModint.hpp" template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1); static_assert(mod < (1 << 30)); static_assert((mod & 1) == 1); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; #line 2 "library/ntt/ntt.hpp" template<typename mint> struct NTT{ static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for(u64 i = 2;i * i <= m; ++i) { if(m % i == 0) { ds[idx++] = i; while(m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while(1) { int flg = 1; for(int i = 0;i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i],r = 1; while(b) { if(b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if(r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level],y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for(int i = k - 2;i > 0; --i) w[i] = w[i+1] * w[i+1],y[i] = y[i+1] * y[i+1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for(int i = 3;i < k;++i) { dw[i] = dw[i-1] * y[i-2] * w[i]; dy[i] = dy[i-1] * w[i-2] * y[i]; } } NTT() {setwy(level);} void fft4(vector<mint> &a,int k) { if((int)a.size() <= 1) return; if(k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for(int j = 0;j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while(v) { { int j0 = 0,j1 = v; int j2 = j1 + v; int j3 = j2 + v; for(;j0 < v; ++j0,++j1,++j2,++j3) { mint t0 = a[j0], t1 = a[j1],t2 = a[j2],t3 = a[j3]; mint t0p2 = t0 + t2,t1p3 = t1 + t3; mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } mint ww = one,xx = one * dw[2],wx = one; for(int jh = 4;jh < u;) { ww = xx * xx,wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for(;j0 < je;++j0,++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2,t1p3 = t1 + t3; mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector<mint> &a,int k) { if((int)a.size() <= 1) return; if(k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while(u) { { int j0 = 0,j1 = v; int j2 = j1 + v; int j3 = j2 + v; for(;j0 < v;++j0,++j1,++j2,++j3) { mint t0 = a[j0],t1 = a[j1],t2 = a[j2],t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } mint ww = one,xx = one * dy[2],yy = one; u <<= 2; for(int jh = 4;jh < u;) { ww = xx * xx,yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for(;j0 < je;++j0,++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if(k & 1) { u = 1 << (k - 1); for(int j = 0;j < u;++j) { mint ajv = a[j] - a[j+u]; a[j] += a[j+u]; a[j+u] = ajv; } } } void ntt(vector<mint> &a) { if((int)a.size() <= 1) return; fft4(a,__builtin_ctz(a.size())); } void intt(vector<mint> &a) { if((int)a.size() <= 1) return; ifft4(a,__builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for(auto &x:a) x *= iv; } vector<mint> multiply(const vector<mint> &a,const vector<mint> &b) { int l = a.size() + b.size() - 1; if(min<int>(a.size(),b.size()) <= 40) { vector<mint> s(l); for(int i = 0;i < (int)a.size();++i) for(int j = 0;j < (int)b.size();++j) s[i+j] += a[i] * b[j]; return s; } int k = 2, M = 4; while(M < l) M <<= 1, ++k; //setwy(k); vector<mint> s(M), t(M); for(int i = 0;i < (int)a.size();++i) s[i] = a[i]; for(int i = 0;i < (int)b.size();++i) t[i] = b[i]; fft4(s,k); fft4(t,k); for(int i = 0;i < M;++i) s[i] *= t[i]; ifft4(s,k); s.resize(l); mint invm = mint(M).inverse(); for(int i = 0;i < l;++i) s[i] *= invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for(int i = 0;i < M;++i) b[i] *= r,r *= zeta; ntt(b); copy(begin(b),end(b),back_inserter(a)); } }; #line 4 "library/ntt/ArbitraryNTT.hpp" namespace ArbitraryNTT { using i64 = int64_t; using u128 = __uint128_t; constexpr int32_t m0 = 167772161; constexpr int32_t m1 = 469762049; constexpr int32_t m2 = 754974721; using mint0 = LazyMontgomeryModInt<m0>; using mint1 = LazyMontgomeryModInt<m1>; using mint2 = LazyMontgomeryModInt<m2>; constexpr int r01 = mint1(m0).inverse().get(); constexpr int r02 = mint2(m0).inverse().get(); constexpr int r12 = mint2(m1).inverse().get(); constexpr int r02r12 = i64(r02) * r12 % m2; constexpr i64 w1 = m0; constexpr i64 w2 = i64(m0) * m1; template <typename T, typename submint> vector<submint> mul(const vector<T> &a, const vector<T> &b) { static NTT<submint> ntt; vector<submint> s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod()); for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod()); return ntt.multiply(s, t); } template <typename T> vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) { auto d0 = mul<T, mint0>(s, t); auto d1 = mul<T, mint1>(s, t); auto d2 = mul<T, mint2>(s, t); int n = d0.size(); vector<int> ret(n); const int W1 = w1 % mod; const int W2 = w2 % mod; for (int i = 0; i < n; i++) { int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get(); int b = i64(n1 + m1 - a) * r01 % m1; int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2; ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod; } return ret; } template <typename mint> vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { if (a.size() == 0 && b.size() == 0) return {}; if (min<int>(a.size(), b.size()) < 128) { vector<mint> ret(a.size() + b.size() - 1); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j]; return ret; } vector<int> s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get(); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get(); vector<int> u = multiply<int>(s, t, mint::get_mod()); vector<mint> ret(u.size()); for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]); return ret; } template <typename T> vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) { if (s.size() == 0 && t.size() == 0) return {}; if (min<int>(s.size(), t.size()) < 128) { vector<u128> ret(s.size() + t.size() - 1); for (int i = 0; i < (int)s.size(); ++i) for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j]; return ret; } auto d0 = mul<T, mint0>(s, t); auto d1 = mul<T, mint1>(s, t); auto d2 = mul<T, mint2>(s, t); int n = d0.size(); vector<u128> ret(n); for (int i = 0; i < n; i++) { i64 n1 = d1[i].get(), n2 = d2[i].get(); i64 a = d0[i].get(); i64 b = (n1 + m1 - a) * r01 % m1; i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2; ret[i] = a + b * w1 + u128(c) * w2; } return ret; } } // namespace ArbitraryNTT #line 88 "main.cpp" using mint = LazyMontgomeryModInt<258280327>; int main() { INT(n); VEC(mint,a,n+1); INT(m); VEC(mint,b,m+1); auto c = ArbitraryNTT::multiply(a,b); cout << (int)c.size() - 1 << '\n'; rep(i,c.size()) { if(i > 0) cout << " "; cout << c[i]; } cout << '\n'; }