結果
問題 | No.2272 多項式乗算 mod 258280327 |
ユーザー | cutmdo |
提出日時 | 2023-04-14 22:31:34 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,811 bytes |
コンパイル時間 | 3,795 ms |
コンパイル使用メモリ | 272,292 KB |
実行使用メモリ | 61,612 KB |
最終ジャッジ日時 | 2024-10-10 13:27:15 |
合計ジャッジ時間 | 7,654 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 7 ms
5,248 KB |
testcase_25 | AC | 24 ms
7,040 KB |
testcase_26 | AC | 25 ms
6,912 KB |
testcase_27 | AC | 50 ms
10,624 KB |
testcase_28 | AC | 52 ms
10,752 KB |
testcase_29 | AC | 225 ms
32,120 KB |
testcase_30 | AC | 475 ms
61,612 KB |
testcase_31 | AC | 399 ms
61,484 KB |
testcase_32 | AC | 406 ms
61,480 KB |
ソースコード
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,avx512f") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <iostream> #include <iomanip> #include <string> #include <cmath> #include <algorithm> #include <vector> #include <set> #include <map> #include <unordered_map> #include <unordered_set> #include <list> #include <stack> #include <queue> #include <bitset> #include <numeric> #include <cassert> #include <memory> #include <random> #include <functional> #include <complex> #include <immintrin.h> #include <stdexcept> #ifdef DEBUG #include "./CompetitiveProgrammingCpp/Utils/debug.hpp" #include "./CompetitiveProgrammingCpp/Utils/Timer.hpp" #include "./CompetitiveProgrammingCpp/Utils/sample.hpp" #else #define dump(...) template<class T>constexpr inline auto d_val(T a, T b) { return a; } #endif /* macro */ #define FOR(i, b, e) for(ll i = (ll)(b); i < (ll)(e); ++i) #define RFOR(i, b, e) for(ll i = (ll)((e)-1); i >= (ll)(b); --i) #define REP(i, n) FOR(i, 0, (n)) #define RREP(i, n) RFOR(i, 0, (n)) #define REPC(x,c) for(const auto& x:(c)) #define REPI2(it,b,e) for(auto it = (b); it != (e); ++it) #define REPI(it,c) REPI2(it, (c).begin(), (c).end()) #define RREPI(it,c) REPI2(it, (c).rbegin(), (c).rend()) #define REPI_ERACE2(it, b, e) for(auto it = (b); it != (e);) #define REPI_ERACE(it, c) REPI_ERACE2(it, (c).begin(), (c).end()) #define ALL(x) (x).begin(),(x).end() #define cauto const auto& /* macro func */ template<class T> inline auto sort(T& t) { std::sort(ALL(t)); } template<class T> inline auto rsort(T& t) { std::sort((t).rbegin(), (t).rend()); } template<class T> inline auto unique(T& t) { (t).erase(unique((t).begin(), (t).end()), (t).end()); } template<class T, class S> inline auto chmax(T& t, const S& s) { if(s > t) { t = s; return true; } return false; } template<class T, class S> inline auto chmin(T& t, const S& s) { if(s < t) { t = s; return true; } return false; } inline auto BR() { std::cout << "\n"; } /* type define */ using ll = long long; using VS = std::vector<std::string>; using VL = std::vector<long long>; using VVL = std::vector<VL>; using VVVL = std::vector<VVL>; using VVVVL = std::vector<VVVL>; using VVVVVL = std::vector<VVVVL>; using VD = std::vector<double>; template<class T> using V = std::vector<T>; template<class T = ll, class U = T> using P = std::pair<T, U>; using PAIR = P<ll>; /* using std */ using std::cout; constexpr char endl = '\n'; using std::cin; using std::pair; using std::string; using std::stack; using std::queue; using std::deque; using std::vector; using std::list; using std::map; using std::unordered_map; using std::multimap; using std::unordered_multimap; using std::set; using std::unordered_set; using std::unordered_multiset; using std::multiset; using std::bitset; using std::priority_queue; /* Initial processing */ struct Preprocessing { Preprocessing() { std::cin.tie(0); std::ios::sync_with_stdio(0); }; }_Preprocessing; /* define hash */ namespace std { template <> class hash<std::pair<ll, ll>> { public: size_t operator()(const std::pair<ll, ll>& x) const { return hash<ll>()(1000000000 * x.first + x.second); } }; } /* input */ template<class T> std::istream& operator >> (std::istream& is, vector<T>& vec) { for(T& x : vec) is >> x; return is; } /* constant value */ // constexpr ll MOD = 1000000007; constexpr ll MOD = 998244353; //============================================================================================= struct ArbitraryModInt { int x; ArbitraryModInt() : x(0) {} ArbitraryModInt(int64_t y) : x(y >= 0 ? y % mod() : (mod() - (-y) % mod()) % mod()) {} static int& mod() { static int mod = 0; return mod; } static void set_mod(int md) { mod() = md; } ArbitraryModInt& operator+=(const ArbitraryModInt& p) { if((x += p.x) >= mod()) x -= mod(); return *this; } ArbitraryModInt& operator-=(const ArbitraryModInt& p) { if((x += mod() - p.x) >= mod()) x -= mod(); return *this; } ArbitraryModInt& operator*=(const ArbitraryModInt& p) { unsigned long long a = (unsigned long long) x * p.x; unsigned xh = (unsigned)(a >> 32), xl = (unsigned)a, d, m; asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod())); x = m; return *this; } ArbitraryModInt& operator/=(const ArbitraryModInt& p) { *this *= p.inverse(); return *this; } ArbitraryModInt operator-() const { return ArbitraryModInt(-x); } ArbitraryModInt operator+(const ArbitraryModInt& p) const { return ArbitraryModInt(*this) += p; } ArbitraryModInt operator-(const ArbitraryModInt& p) const { return ArbitraryModInt(*this) -= p; } ArbitraryModInt operator*(const ArbitraryModInt& p) const { return ArbitraryModInt(*this) *= p; } ArbitraryModInt operator/(const ArbitraryModInt& p) const { return ArbitraryModInt(*this) /= p; } bool operator==(const ArbitraryModInt& p) const { return x == p.x; } bool operator!=(const ArbitraryModInt& p) const { return x != p.x; } ArbitraryModInt inverse() const { int a = x, b = mod(), u = 1, v = 0, t; while(b > 0) { t = a / b; std::swap(a -= t * b, b); std::swap(u -= t * v, v); } return ArbitraryModInt(u); } ArbitraryModInt pow(int64_t n) const { ArbitraryModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend std::ostream& operator<<(std::ostream& os, const ArbitraryModInt& p) { return os << p.x; } friend std::istream& operator>>(std::istream& is, ArbitraryModInt& a) { int64_t t; is >> t; a = ArbitraryModInt(t); return (is); } }; namespace FastFourierTransform { using real = long double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C& c) const { return C(x + c.x, y + c.y); } inline C operator-(const C& c) const { return C(x - c.x, y - c.y); } inline C operator*(const C& c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector< C > rts = {{0, 0}, {1, 0}}; vector< int > rev = {0, 1}; void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector< C >& a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { std::swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector< int64_t > multiply(const vector< int >& a, const vector< int >& b) { int need = (int)a.size() + (int)b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < sz; i++) { int x = (i < (int)a.size() ? a[i] : 0); int y = (i < (int)b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector< int64_t > ret(need); for(int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; template< typename T > struct ArbitraryModConvolution { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; vector< T > multiply(const vector< T >& a, const vector< T >& b, int need = -1) { if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < a.size(); i++) { fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15); } fft(fa, sz); vector< C > fb(sz); if(a == b) { fb = fa; } else { for(int i = 0; i < b.size(); i++) { fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector< T > ret(need); for(int i = 0; i < need; i++) { int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; auto solve(ll n, const VL& f, ll m, const VL& g) { constexpr ll mod = 258280327; ArbitraryModInt::set_mod(mod); V<ArbitraryModInt> fm; fm.reserve(n); REPC(x, f) { fm.emplace_back(x % mod); } V<ArbitraryModInt> gm; gm.reserve(m); REPC(x, g) { gm.emplace_back(x % mod); } dump(fm, gm); ArbitraryModConvolution<ArbitraryModInt> fft; auto ans = fft.multiply(fm, gm); return ans; } signed main() { ll n; cin >> n; VL f(n + 1); cin >> f; ll m; cin >> m; VL g(m + 1); cin >> g; auto ans = solve(n, f, m, g); cout << ans.size() - 1 << endl; REPC(x, ans) { cout << x << " "; }BR(); }