結果
問題 | No.2272 多項式乗算 mod 258280327 |
ユーザー | Shirotsume |
提出日時 | 2023-04-14 22:32:03 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,686 bytes |
コンパイル時間 | 556 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 186,076 KB |
最終ジャッジ日時 | 2024-10-10 13:28:00 |
合計ジャッジ時間 | 9,516 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 49 ms
60,928 KB |
testcase_01 | AC | 44 ms
55,168 KB |
testcase_02 | AC | 42 ms
55,424 KB |
testcase_03 | AC | 43 ms
55,296 KB |
testcase_04 | AC | 43 ms
55,168 KB |
testcase_05 | AC | 43 ms
55,424 KB |
testcase_06 | AC | 43 ms
55,040 KB |
testcase_07 | AC | 42 ms
55,168 KB |
testcase_08 | AC | 44 ms
54,784 KB |
testcase_09 | AC | 43 ms
55,424 KB |
testcase_10 | AC | 44 ms
54,912 KB |
testcase_11 | AC | 43 ms
55,424 KB |
testcase_12 | AC | 43 ms
55,680 KB |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 44 ms
55,680 KB |
testcase_16 | AC | 43 ms
54,912 KB |
testcase_17 | AC | 43 ms
55,168 KB |
testcase_18 | AC | 44 ms
55,936 KB |
testcase_19 | AC | 43 ms
55,436 KB |
testcase_20 | AC | 44 ms
55,424 KB |
testcase_21 | AC | 79 ms
74,412 KB |
testcase_22 | AC | 88 ms
74,368 KB |
testcase_23 | AC | 89 ms
74,240 KB |
testcase_24 | AC | 160 ms
78,200 KB |
testcase_25 | AC | 300 ms
82,708 KB |
testcase_26 | AC | 299 ms
82,656 KB |
testcase_27 | AC | 503 ms
89,816 KB |
testcase_28 | AC | 508 ms
90,844 KB |
testcase_29 | WA | - |
testcase_30 | TLE | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
ソースコード
class FFT(): def primitive_root_constexpr(self,m): if m==2:return 1 if m==167772161:return 3 if m==469762049:return 3 if m==754974721:return 11 if m==998244353:return 3 divs=[0]*20 divs[0]=2 cnt=1 x=(m-1)//2 while(x%2==0):x//=2 i=3 while(i*i<=x): if (x%i==0): divs[cnt]=i cnt+=1 while(x%i==0): x//=i i+=2 if x>1: divs[cnt]=x cnt+=1 g=2 while(1): ok=True for i in range(cnt): if pow(g,(m-1)//divs[i],m)==1: ok=False break if ok: return g g+=1 def bsf(self,x): res=0 while(x%2==0): res+=1 x//=2 return res butterfly_first=True butterfly_inv_first=True sum_e=[0]*30 sum_ie=[0]*30 def __init__(self,MOD): self.mod=MOD self.g=self.primitive_root_constexpr(self.mod) def butterfly(self,a): n=len(a) h=(n-1).bit_length() if self.butterfly_first: self.butterfly_first=False es=[0]*30 ies=[0]*30 cnt2=self.bsf(self.mod-1) e=pow(self.g,(self.mod-1)>>cnt2,self.mod) ie=pow(e,self.mod-2,self.mod) for i in range(cnt2,1,-1): es[i-2]=e ies[i-2]=ie e=(e*e)%self.mod ie=(ie*ie)%self.mod now=1 for i in range(cnt2-2): self.sum_e[i]=((es[i]*now)%self.mod) now*=ies[i] now%=self.mod for ph in range(1,h+1): w=1<<(ph-1) p=1<<(h-ph) now=1 for s in range(w): offset=s<<(h-ph+1) for i in range(p): l=a[i+offset] r=a[i+offset+p]*now r%=self.mod a[i+offset]=l+r a[i+offset]%=self.mod a[i+offset+p]=l-r a[i+offset+p]%=self.mod now*=self.sum_e[(~s & -~s).bit_length()-1] now%=self.mod def butterfly_inv(self,a): n=len(a) h=(n-1).bit_length() if self.butterfly_inv_first: self.butterfly_inv_first=False es=[0]*30 ies=[0]*30 cnt2=self.bsf(self.mod-1) e=pow(self.g,(self.mod-1)>>cnt2,self.mod) ie=pow(e,self.mod-2,self.mod) for i in range(cnt2,1,-1): es[i-2]=e ies[i-2]=ie e=(e*e)%self.mod ie=(ie*ie)%self.mod now=1 for i in range(cnt2-2): self.sum_ie[i]=((ies[i]*now)%self.mod) now*=es[i] now%=self.mod for ph in range(h,0,-1): w=1<<(ph-1) p=1<<(h-ph) inow=1 for s in range(w): offset=s<<(h-ph+1) for i in range(p): l=a[i+offset] r=a[i+offset+p] a[i+offset]=l+r a[i+offset]%=self.mod a[i+offset+p]=(l-r)*inow a[i+offset+p]%=self.mod inow*=self.sum_ie[(~s & -~s).bit_length()-1] inow%=self.mod def convolution(self,a,b): n=len(a);m=len(b) if not(a) or not(b): return [] if min(n,m)<=40: if n<m: n,m=m,n a,b=b,a res=[0]*(n+m-1) for i in range(n): for j in range(m): res[i+j]+=a[i]*b[j] res[i+j]%=self.mod return res z=1<<((n+m-2).bit_length()) a=a+[0]*(z-n) b=b+[0]*(z-m) self.butterfly(a) self.butterfly(b) c=[0]*z for i in range(z): c[i]=(a[i]*b[i])%self.mod self.butterfly_inv(c) iz=pow(z,self.mod-2,self.mod) for i in range(n+m-1): c[i]=(c[i]*iz)%self.mod return c[:n+m-1] def inv_gcd(a,b): a=a%b if a==0: return (b,0) s=b;t=a m0=0;m1=1 while(t): u=s//t s-=t*u m0-=m1*u s,t=t,s m0,m1=m1,m0 if m0<0: m0+=b//s return (s,m0) def inv_mod(x,m): assert 1<=m z=inv_gcd(x,m) assert z[0]==1 return z[1] def crt(r,m): assert len(r)==len(m) n=len(r) r0=0;m0=1 for i in range(n): assert 1<=m[i] r1=r[i]%m[i] m1=m[i] if m0<m1: r0,r1=r1,r0 m0,m1=m1,m0 if (m0%m1==0): if (r0%m1!=r1): return (0,0) continue g,im=inv_gcd(m0,m1) u1=m1//g if ((r1-r0)%g): return (0,0) x=(r1-r0)//g % u1*im%u1 r0+=x*m0 m0*=u1 if r0<0: r0+=m0 return (r0,m0) mod1 = 1224736769 mod2 = 469762049 F1 = FFT(mod1) F2 = FFT(mod2) import sys from collections import deque, Counter input = lambda: sys.stdin.readline().rstrip() ii = lambda: int(input()) mi = lambda: map(int, input().split()) li = lambda: list(mi()) inf = 2 ** 63 - 1 mod = 998244353 n1 = ii() a = li() n2 = ii() b = li() a += [0] * n2 b += [0] * n1 C1 = F1.convolution(a, b) C2 = F2.convolution(a, b) c = [] mod = 258280327 for i in range(n1 + n2 + 1): ret = crt((C1[i], C2[i]), (mod1, mod2))[0] % mod c.append(ret) print(len(c) - 1) print(*c)