結果

問題 No.2272 多項式乗算 mod 258280327
ユーザー milanis48663220milanis48663220
提出日時 2023-04-14 22:34:44
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 6,107 bytes
コンパイル時間 2,822 ms
コンパイル使用メモリ 160,760 KB
実行使用メモリ 29,016 KB
最終ジャッジ日時 2024-10-10 13:30:40
合計ジャッジ時間 8,137 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 WA -
testcase_16 RE -
testcase_17 RE -
testcase_18 AC 2 ms
5,248 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 2 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 6 ms
5,248 KB
testcase_25 AC 22 ms
5,248 KB
testcase_26 AC 23 ms
5,248 KB
testcase_27 AC 49 ms
6,616 KB
testcase_28 AC 49 ms
6,420 KB
testcase_29 AC 261 ms
16,136 KB
testcase_30 AC 544 ms
29,008 KB
testcase_31 AC 533 ms
29,012 KB
testcase_32 AC 541 ms
29,016 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <algorithm>
#include <iomanip>
#include <vector>
#include <queue>
#include <deque>
#include <set>
#include <map>
#include <tuple>
#include <cmath>
#include <numeric>
#include <functional>
#include <cassert>
#include <atcoder/modint>
#include <atcoder/convolution>

#define debug_value(x) cerr << "line" << __LINE__ << ":<" << __func__ << ">:" << #x << "=" << x << endl;
#define debug(x) cerr << "line" << __LINE__ << ":<" << __func__ << ">:" << x << endl;

template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }

using namespace std;
typedef long long ll;

template<typename T>
vector<vector<T>> vec2d(int n, int m, T v){
    return vector<vector<T>>(n, vector<T>(m, v));
}

template<typename T>
vector<vector<vector<T>>> vec3d(int n, int m, int k, T v){
    return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, v)));
}

template<typename T>
void print_vector(vector<T> v, char delimiter=' '){
    if(v.empty()) {
        cout << endl;
        return;
    }
    for(int i = 0; i+1 < v.size(); i++) cout << v[i] << delimiter;
    cout << v.back() << endl;
}

// https://math314.hateblo.jp/entry/2015/05/07/014908

typedef pair<int, int> Pii;

#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)

template<class T> T extgcd(T a, T b, T& x, T& y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b -= q * a, a); } return b; }
template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; }
ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }

template<int mod, int primitive_root>
class NTT {
public:
	int get_mod() const { return mod; }
	void _ntt(vector<ll>& a, int sign) {
		const int n = sz(a);
		assert((n ^ (n&-n)) == 0); //n = 2^k

		const int g = 3; //g is primitive root of mod
		int h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1
		if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod

		//bit reverse
		int i = 0;
		for (int j = 1; j < n - 1; ++j) {
			for (int k = n >> 1; k >(i ^= k); k >>= 1);
			if (j < i) swap(a[i], a[j]);
		}

		for (int m = 1; m < n; m *= 2) {
			const int m2 = 2 * m;
			const ll base = mod_pow(h, n / m2, mod);
			ll w = 1;
			FOR(x, m) {
				for (int s = x; s < n; s += m2) {
					ll u = a[s];
					ll d = a[s + m] * w % mod;
					a[s] = u + d;
					if (a[s] >= mod) a[s] -= mod;
					a[s + m] = u - d;
					if (a[s + m] < 0) a[s + m] += mod;
				}
				w = w * base % mod;
			}
		}

		for (auto& x : a) if (x < 0) x += mod;
	}
	void ntt(vector<ll>& input) {
		_ntt(input, 1);
	}
	void intt(vector<ll>& input) {
		_ntt(input, -1);
		const int n_inv = mod_inv(sz(input), mod);
		for (auto& x : input) x = x * n_inv % mod;
	}

	// 畳み込み演算を行う
	vector<ll> convolution(const vector<ll>& a, const vector<ll>& b){
		int ntt_size = 1;
		while (ntt_size < sz(a) + sz(b)) ntt_size *= 2;

		vector<ll> _a = a, _b = b;
		_a.resize(ntt_size); _b.resize(ntt_size);

		ntt(_a);
		ntt(_b);

		FOR(i, ntt_size){
			(_a[i] *= _b[i]) %= mod;
		}

		intt(_a);
		return _a;
	}
};

ll garner(vector<Pii> mr, int mod){
	mr.emplace_back(mod, 0);

	vector<ll> coffs(sz(mr), 1);
	vector<ll> constants(sz(mr), 0);
	FOR(i, sz(mr) - 1){
		// coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first) を解く
		ll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first;
		if (v < 0) v += mr[i].first;

		for (int j = i + 1; j < sz(mr); j++) {
			(constants[j] += coffs[j] * v) %= mr[j].first;
			(coffs[j] *= mr[i].first) %= mr[j].first;
		}
	}

	return constants[sz(mr) - 1];
}

typedef NTT<167772161, 3> NTT_1;
typedef NTT<469762049, 3> NTT_2;
typedef NTT<1224736769, 3> NTT_3;

//任意のmodで畳み込み演算 O(n log n)
vector<ll> int32mod_convolution(vector<ll> a, vector<ll> b,int mod){
	for (auto& x : a) x %= mod;
	for (auto& x : b) x %= mod;
	NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
	auto x = ntt1.convolution(a, b);
	auto y = ntt2.convolution(a, b);
	auto z = ntt3.convolution(a, b);

	vector<ll> ret(sz(x));
	vector<Pii> mr(3);
	FOR(i, sz(x)){
		mr[0].first = ntt1.get_mod(), mr[0].second = (int)x[i];
		mr[1].first = ntt2.get_mod(), mr[1].second = (int)y[i];
		mr[2].first = ntt3.get_mod(), mr[2].second = (int)z[i];
		ret[i] = garner(mr, mod);
	}

	return ret;
}

// garnerのアルゴリズムを直書きしたversion,速い
vector<ll> fast_int32mod_convolution(vector<ll> a, vector<ll> b,int mod){
	for (auto& x : a) x %= mod;
	for (auto& x : b) x %= mod;
	
	NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
	assert(ntt1.get_mod() < ntt2.get_mod() && ntt2.get_mod() < ntt3.get_mod());
	auto x = ntt1.convolution(a, b);
	auto y = ntt2.convolution(a, b);
	auto z = ntt3.convolution(a, b);

	// garnerのアルゴリズムを極力高速化した
	const ll m1 = ntt1.get_mod(), m2 = ntt2.get_mod(), m3 = ntt3.get_mod();
	const ll m1_inv_m2 = mod_inv<ll>(m1, m2);
	const ll m12_inv_m3 = mod_inv<ll>(m1 * m2, m3);
	const ll m12_mod = m1 * m2 % mod;
	vector<ll> ret(sz(x));
	FOR(i, sz(x)){
		ll v1 = (y[i] - x[i]) *  m1_inv_m2 % m2;
		if (v1 < 0) v1 += m2;
		ll v2 = (z[i] - (x[i] + m1 * v1) % m3) * m12_inv_m3 % m3;
		if (v2 < 0) v2 += m3;
		ll constants3 = (x[i] + m1 * v1 + m12_mod * v2) % mod;
		if (constants3 < 0) constants3 += mod;
		ret[i] = constants3;
	}

	return ret;
}

const ll mod = 258280327;



int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout << setprecision(10) << fixed;
    int n; cin >> n;
    vector<ll> f(n+1);
    for(int i = 0; i <= n; i++){
        cin >> f[i]; f[i] %= mod;
    }
    int m; cin >> m;
    vector<ll> g(m+1);
    for(int i = 0; i <= m; i++){
        cin >> g[i]; g[i] %= mod;
    }
    assert(n != 0 && m != 0);
    auto h = fast_int32mod_convolution(f, g, mod);
    while(h.size() > 1 && h.back() == 0) h.pop_back();
    cout << h.size()-1 << endl;
    print_vector(h);
}
0