結果
問題 | No.2272 多項式乗算 mod 258280327 |
ユーザー |
|
提出日時 | 2023-04-14 22:35:57 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,903 bytes |
コンパイル時間 | 2,243 ms |
コンパイル使用メモリ | 210,572 KB |
最終ジャッジ日時 | 2025-02-12 07:21:02 |
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 31 WA * 2 |
ソースコード
#include<bits/stdc++.h>using namespace std;//#pragma GCC optimize("Ofast")#define rep(i,n) for(ll i=0;i<n;i++)#define repl(i,l,r) for(ll i=(l);i<(r);i++)#define per(i,n) for(ll i=(n)-1;i>=0;i--)#define perl(i,r,l) for(ll i=r-1;i>=l;i--)#define fi first#define se second#define pb push_back#define ins insert#define pqueue(x) priority_queue<x,vector<x>,greater<x>>#define all(x) (x).begin(),(x).end()#define CST(x) cout<<fixed<<setprecision(x)#define vtpl(x,y,z) vector<tuple<x,y,z>>#define rev(x) reverse(x);using ll=long long;using vl=vector<ll>;using vvl=vector<vector<ll>>;using pl=pair<ll,ll>;using vpl=vector<pl>;using vvpl=vector<vpl>;const ll MOD=1000000007;const ll MOD9=998244353;const int inf=1e9+10;const ll INF=4e18;const ll dy[9]={1,0,-1,0,1,1,-1,-1,0};const ll dx[9]={0,1,0,-1,1,-1,1,-1,0};template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}namespace NTT {// int32型のmodが取れるFFT。auto c=NTT::mul(a,b,mod)で受け取り。TIME指定。// ChineseRemと組み合わせてlong longにもできるstd::vector<int> tmp;size_t sz = 1;inline int powMod(int n, int p, int m) {int res = 1;while (p) {if (p & 1) res = (ll)res * n % m;n = (ll)n * n % m;p >>= 1;}return (int)res;}inline int invMod(int n, int m) {return powMod(n, m - 2, m);}template <int Mod, int PrimitiveRoot>struct NTTPart {static std::vector<int> ntt(std::vector<int> a, bool inv = false) {size_t mask = sz - 1;size_t p = 0;for (size_t i = sz >> 1; i >= 1; i >>= 1) {auto& cur = (p & 1) ? tmp : a;auto& nex = (p & 1) ? a : tmp;int e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);if (inv) e = invMod(e, Mod);int w = 1;for (size_t j = 0; j < sz; j += i) {for (size_t k = 0; k < i; ++k) {nex[j + k] = (cur[((j << 1) & mask) + k] + (ll)w * cur[(((j << 1) + i) & mask) + k]) % Mod;}w = (ll)w * e % Mod;}++p;}if (p & 1) std::swap(a, tmp);if (inv) {int invSz = invMod(sz, Mod);for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * invSz % Mod;}return a;}static std::vector<int> mul(std::vector<int> a, std::vector<int> b) {a = ntt(a);b = ntt(b);for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * b[i] % Mod;a = ntt(a, true);return a;}};constexpr int M[] = {1224736769, 469762049, 167772161};constexpr int PR[] = {3, 3, 3};constexpr int NTT_CONVOLUTION_TIME = 3;/*X := max(a)*max(b)*max(|a|, |b|) のとき,NTT_CONVOLUTION_TIME <- 1: X < 1224736769 = 1.2*10^ 9 ~ 2^30NTT_CONVOLUTION_TIME <- 2: X < 575334854091079681 = 5.8*10^17 ~ 2^59NTT_CONVOLUTION_TIME <- 3: X < 2^86 (32bit * 32bit * 10^7くらいまで)*/inline void garner(std::vector<int> *c, int mod) {if (NTT_CONVOLUTION_TIME == 1) {for(auto& x : c[0]) x %= mod;}else if (NTT_CONVOLUTION_TIME == 2) {const int r01 = invMod(M[0], M[1]);for (size_t i = 0; i < sz; ++i) {c[1][i] = (c[1][i] - c[0][i]) * (ll)r01 % M[1];if (c[1][i] < 0) c[1][i] += M[1];c[0][i] = (c[0][i] + (ll)c[1][i] * M[0]) % mod;}}else if (NTT_CONVOLUTION_TIME == 3) {const int R01 = invMod(M[0], M[1]);const int R02 = invMod(M[0], M[2]);const int R12 = invMod(M[1], M[2]);const int M01 = (ll)M[0] * M[1] % mod;for (size_t i = 0; i < sz; ++i) {c[1][i] = (c[1][i] - c[0][i]) * (ll)R01 % M[1];if (c[1][i] < 0) c[1][i] += M[1];c[2][i] = ((c[2][i] - c[0][i]) * (ll)R02 % M[2] - c[1][i]) * R12 % M[2];if (c[2][i] < 0) c[2][i] += M[2];c[0][i] = (c[0][i] + (ll)c[1][i] * M[0] + (ll)c[2][i] * M01) % mod;}}}std::vector<int> mul(std::vector<int> a, std::vector<int> b, int mod) {for (auto& x : a) x %= mod;for (auto& x : b) x %= mod;size_t m = a.size() + b.size() - 1;sz = 1;while (m > sz) sz <<= 1;tmp.resize(sz);a.resize(sz, 0);b.resize(sz, 0);std::vector<int> c[NTT_CONVOLUTION_TIME];if (NTT_CONVOLUTION_TIME >= 1) c[0] = NTTPart<M[0], PR[0]>::mul(a, b);if (NTT_CONVOLUTION_TIME >= 2) c[1] = NTTPart<M[1], PR[1]>::mul(a, b);if (NTT_CONVOLUTION_TIME >= 3) c[2] = NTTPart<M[2], PR[2]>::mul(a, b);for (auto& v : c) v.resize(m);garner(c, mod);return c[0];}}; // !!! CHECK NTT_CONVOLUTION_TIME !!!int main(){ll n;cin >> n;vector<int> f(n+1);const ll mod=258280327;rep(i,n+1){ll k;cin >> k;k%=mod;f[i]=k;}ll m;cin >> m;vector<int> g(m+1);rep(i,m+1){ll k;cin >> k;k%=mod;g[i]=k;}auto fg=NTT::mul(f,g,mod);cout << n+m << endl;rep(i,n+m+1){cout << fg[i] <<" ";}cout << endl;}