結果

問題 No.2272 多項式乗算 mod 258280327
ユーザー fumofumofuni
提出日時 2023-04-14 22:35:57
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 4,903 bytes
コンパイル時間 2,243 ms
コンパイル使用メモリ 210,572 KB
最終ジャッジ日時 2025-02-12 07:21:02
ジャッジサーバーID
(参考情報)
judge4 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 31 WA * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
//#pragma GCC optimize("Ofast")
#define rep(i,n) for(ll i=0;i<n;i++)
#define repl(i,l,r) for(ll i=(l);i<(r);i++)
#define per(i,n) for(ll i=(n)-1;i>=0;i--)
#define perl(i,r,l) for(ll i=r-1;i>=l;i--)
#define fi first
#define se second
#define pb push_back
#define ins insert
#define pqueue(x) priority_queue<x,vector<x>,greater<x>>
#define all(x) (x).begin(),(x).end()
#define CST(x) cout<<fixed<<setprecision(x)
#define vtpl(x,y,z) vector<tuple<x,y,z>>
#define rev(x) reverse(x);
using ll=long long;
using vl=vector<ll>;
using vvl=vector<vector<ll>>;
using pl=pair<ll,ll>;
using vpl=vector<pl>;
using vvpl=vector<vpl>;
const ll MOD=1000000007;
const ll MOD9=998244353;
const int inf=1e9+10;
const ll INF=4e18;
const ll dy[9]={1,0,-1,0,1,1,-1,-1,0};
const ll dx[9]={0,1,0,-1,1,-1,1,-1,0};
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
namespace NTT {
// int32modFFTauto c=NTT::mul(a,b,mod)TIME
// ChineseRemlong long
std::vector<int> tmp;
size_t sz = 1;
inline int powMod(int n, int p, int m) {
int res = 1;
while (p) {
if (p & 1) res = (ll)res * n % m;
n = (ll)n * n % m;
p >>= 1;
}
return (int)res;
}
inline int invMod(int n, int m) {
return powMod(n, m - 2, m);
}
template <int Mod, int PrimitiveRoot>
struct NTTPart {
static std::vector<int> ntt(std::vector<int> a, bool inv = false) {
size_t mask = sz - 1;
size_t p = 0;
for (size_t i = sz >> 1; i >= 1; i >>= 1) {
auto& cur = (p & 1) ? tmp : a;
auto& nex = (p & 1) ? a : tmp;
int e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);
if (inv) e = invMod(e, Mod);
int w = 1;
for (size_t j = 0; j < sz; j += i) {
for (size_t k = 0; k < i; ++k) {
nex[j + k] = (cur[((j << 1) & mask) + k] + (ll)w * cur[(((j << 1) + i) & mask) + k]) % Mod;
}
w = (ll)w * e % Mod;
}
++p;
}
if (p & 1) std::swap(a, tmp);
if (inv) {
int invSz = invMod(sz, Mod);
for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * invSz % Mod;
}
return a;
}
static std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
a = ntt(a);
b = ntt(b);
for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * b[i] % Mod;
a = ntt(a, true);
return a;
}
};
constexpr int M[] = {1224736769, 469762049, 167772161};
constexpr int PR[] = {3, 3, 3};
constexpr int NTT_CONVOLUTION_TIME = 3;
/*
X := max(a)*max(b)*max(|a|, |b|) ,
NTT_CONVOLUTION_TIME <- 1: X < 1224736769 = 1.2*10^ 9 ~ 2^30
NTT_CONVOLUTION_TIME <- 2: X < 575334854091079681 = 5.8*10^17 ~ 2^59
NTT_CONVOLUTION_TIME <- 3: X < 2^86 (32bit * 32bit * 10^7)
*/
inline void garner(std::vector<int> *c, int mod) {
if (NTT_CONVOLUTION_TIME == 1) {
for(auto& x : c[0]) x %= mod;
}
else if (NTT_CONVOLUTION_TIME == 2) {
const int r01 = invMod(M[0], M[1]);
for (size_t i = 0; i < sz; ++i) {
c[1][i] = (c[1][i] - c[0][i]) * (ll)r01 % M[1];
if (c[1][i] < 0) c[1][i] += M[1];
c[0][i] = (c[0][i] + (ll)c[1][i] * M[0]) % mod;
}
}
else if (NTT_CONVOLUTION_TIME == 3) {
const int R01 = invMod(M[0], M[1]);
const int R02 = invMod(M[0], M[2]);
const int R12 = invMod(M[1], M[2]);
const int M01 = (ll)M[0] * M[1] % mod;
for (size_t i = 0; i < sz; ++i) {
c[1][i] = (c[1][i] - c[0][i]) * (ll)R01 % M[1];
if (c[1][i] < 0) c[1][i] += M[1];
c[2][i] = ((c[2][i] - c[0][i]) * (ll)R02 % M[2] - c[1][i]) * R12 % M[2];
if (c[2][i] < 0) c[2][i] += M[2];
c[0][i] = (c[0][i] + (ll)c[1][i] * M[0] + (ll)c[2][i] * M01) % mod;
}
}
}
std::vector<int> mul(std::vector<int> a, std::vector<int> b, int mod) {
for (auto& x : a) x %= mod;
for (auto& x : b) x %= mod;
size_t m = a.size() + b.size() - 1;
sz = 1;
while (m > sz) sz <<= 1;
tmp.resize(sz);
a.resize(sz, 0);
b.resize(sz, 0);
std::vector<int> c[NTT_CONVOLUTION_TIME];
if (NTT_CONVOLUTION_TIME >= 1) c[0] = NTTPart<M[0], PR[0]>::mul(a, b);
if (NTT_CONVOLUTION_TIME >= 2) c[1] = NTTPart<M[1], PR[1]>::mul(a, b);
if (NTT_CONVOLUTION_TIME >= 3) c[2] = NTTPart<M[2], PR[2]>::mul(a, b);
for (auto& v : c) v.resize(m);
garner(c, mod);
return c[0];
}
}; // !!! CHECK NTT_CONVOLUTION_TIME !!!
int main(){
ll n;cin >> n;
vector<int> f(n+1);
const ll mod=258280327;
rep(i,n+1){
ll k;cin >> k;k%=mod;
f[i]=k;
}
ll m;cin >> m;
vector<int> g(m+1);
rep(i,m+1){
ll k;cin >> k;k%=mod;
g[i]=k;
}
auto fg=NTT::mul(f,g,mod);
cout << n+m << endl;
rep(i,n+m+1){
cout << fg[i] <<" ";
}
cout << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0