結果

問題 No.2273 一点乗除区間積
ユーザー akakimidoriakakimidori
提出日時 2023-04-14 22:46:27
言語 Rust
(1.77.0)
結果
AC  
実行時間 134 ms / 5,000 ms
コード長 14,313 bytes
コンパイル時間 3,653 ms
コンパイル使用メモリ 181,748 KB
実行使用メモリ 23,168 KB
最終ジャッジ日時 2024-04-18 20:20:02
合計ジャッジ時間 3,745 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 0 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 0 ms
5,376 KB
testcase_13 AC 1 ms
5,376 KB
testcase_14 AC 1 ms
5,376 KB
testcase_15 AC 1 ms
5,376 KB
testcase_16 AC 4 ms
5,376 KB
testcase_17 AC 3 ms
5,376 KB
testcase_18 AC 44 ms
6,656 KB
testcase_19 AC 42 ms
9,216 KB
testcase_20 AC 102 ms
16,896 KB
testcase_21 AC 134 ms
23,168 KB
testcase_22 AC 93 ms
16,896 KB
testcase_23 AC 91 ms
16,896 KB
testcase_24 AC 88 ms
16,984 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: type alias `Map` is never used
 --> main.rs:4:6
  |
4 | type Map<K, V> = BTreeMap<K, V>;
  |      ^^^
  |
  = note: `#[warn(dead_code)]` on by default

warning: type alias `Set` is never used
 --> main.rs:5:6
  |
5 | type Set<T> = BTreeSet<T>;
  |      ^^^

warning: type alias `Deque` is never used
 --> main.rs:6:6
  |
6 | type Deque<T> = VecDeque<T>;
  |      ^^^^^

warning: type alias `M` is never used
   --> main.rs:407:6
    |
407 | type M = ModInt<StaticMod>;
    |      ^

warning: 4 warnings emitted

ソースコード

diff #

use std::io::Write;
use std::collections::*;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

fn run() {
    input! {
        n: usize,
        b: u64,
        q: usize,
        a: [u64; n],
        ask: [(usize, u64, usize, usize); q],
    }
    let mut f = vec![];
    let mut v = b;
    for p in 2.. {
        if p * p > v {
            break;
        }
        let mut c = 0;
        while v % p == 0 {
            v /= p;
            c += 1;
        }
        if c > 0 {
            f.push((p, c));
        }
    }
    if v > 1 {
        f.push((v, 1));
    }
    let f = f;
    let mut seg = SegmentTreePURQ::new(n, 1 % b, |l, r| *l * *r % b);
    let mut data = vec![vec![0; f.len() + 1]; n];
    for (i, (data, mut a)) in data.iter_mut().zip(a).enumerate() {
        seg.update_tmp(i, a % b);
        for (data, &(p, _)) in data.iter_mut().zip(f.iter()) {
            if a == 0 {
                *data = 1000000000;
            } else {
            while a % p == 0 {
                a /= p;
                *data += 1;
            }
            }
        }
        data[f.len()] = a % b;
    }
    seg.update_all();
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    for (x, m, l, r) in ask {
        if m == b && data[x].iter().zip(f.iter()).all(|(d, f)| *d >= f.1) {
            for (d, f) in data[x].iter_mut().zip(f.iter()) {
                *d -= f.1;
            }
        } else {
            let mut m = m;
            for (d, f) in data[x].iter_mut().zip(f.iter()) {
                if m == 0 {
                    *d = 1000000000;
                } else {
                while m % f.0 == 0 {
                    m /= f.0;
                    *d += 1;
                }
                }
            }
            data[x][f.len()] *= m % b;
            data[x][f.len()] %= b;
        }
        let pow = |mut r: u64, mut n: u64| -> u64 {
            r %= b;
            let mut t = 1 % b;
            while n > 0 {
                if n & 1 == 1 {
                    t = t * r % b;
                }
                r = r * r % b;
                n >>= 1;
            }
            t
        };
        let val = data[x].iter().zip(f.iter()).fold(data[x][f.len()], |s, (d, f)| s * pow(f.0, *d) % b);
        seg.update(x, val);
        let ans = seg.find(l, r + 1);
        writeln!(out, "{}", ans).ok();
    }
}

fn main() {
    run();
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
mod modint {

    use std::marker::*;
    use std::ops::*;

    pub trait Modulo {
        fn modulo() -> u32;
        fn im() -> u64;
        fn reduce(z: u64) -> u32 {
            let x = (z as u128 * Self::im() as u128 >> 64) as u32;
            let mut v = z as u32 - x * Self::modulo();
            if v >= Self::modulo() {
                v += Self::modulo();
            }
            v
        }
    }

    pub struct StaticMod;
    static mut STATIC_MOD: u32 = 0;
    static mut STATIC_MOD_IM: u64 = 0;
    impl Modulo for StaticMod {
        fn modulo() -> u32 {
            unsafe { STATIC_MOD }
        }
        fn im() -> u64 {
            unsafe { STATIC_MOD_IM }
        }
    }

    #[allow(dead_code)]
    impl StaticMod {
        pub fn set_modulo(p: u32) {
            unsafe {
                STATIC_MOD = p;
                STATIC_MOD_IM = (!0u64 / p as u64) + 1;
            }
        }
    }

    pub struct ModInt<T>(u32, PhantomData<T>);

    impl<T> Clone for ModInt<T> {
        fn clone(&self) -> Self {
            ModInt::build(self.0)
        }
    }

    impl<T> Copy for ModInt<T> {}

    impl<T: Modulo> Add for ModInt<T> {
        type Output = ModInt<T>;
        fn add(self, rhs: Self) -> Self::Output {
            let mut d = self.0 + rhs.0;
            if d >= T::modulo() {
                d -= T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> AddAssign for ModInt<T> {
        fn add_assign(&mut self, rhs: Self) {
            *self = *self + rhs;
        }
    }

    impl<T: Modulo> Sub for ModInt<T> {
        type Output = ModInt<T>;
        fn sub(self, rhs: Self) -> Self::Output {
            let mut d = self.0 - rhs.0;
            if self.0 < rhs.0 {
                d += T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> SubAssign for ModInt<T> {
        fn sub_assign(&mut self, rhs: Self) {
            *self = *self - rhs;
        }
    }

    impl<T: Modulo> Mul for ModInt<T> {
        type Output = ModInt<T>;
        fn mul(self, rhs: Self) -> Self::Output {
            Self::build(T::reduce(self.0 as u64 * rhs.0 as u64))
        }
    }

    impl<T: Modulo> MulAssign for ModInt<T> {
        fn mul_assign(&mut self, rhs: Self) {
            *self = *self * rhs;
        }
    }

    impl<T: Modulo> Neg for ModInt<T> {
        type Output = ModInt<T>;
        fn neg(self) -> Self::Output {
            if self.0 == 0 {
                Self::zero()
            } else {
                Self::build(T::modulo() - self.0)
            }
        }
    }

    impl<T: Modulo> std::fmt::Display for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::fmt::Debug for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> Default for ModInt<T> {
        fn default() -> Self {
            Self::zero()
        }
    }

    impl<T: Modulo> std::str::FromStr for ModInt<T> {
        type Err = std::num::ParseIntError;
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let val = s.parse::<u32>()?;
            Ok(ModInt::new(val))
        }
    }

    impl<T: Modulo> From<usize> for ModInt<T> {
        fn from(val: usize) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as usize) as u32)
        }
    }

    impl<T: Modulo> From<u64> for ModInt<T> {
        fn from(val: u64) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as u64) as u32)
        }
    }

    impl<T: Modulo> From<i64> for ModInt<T> {
        fn from(val: i64) -> ModInt<T> {
            let m = T::modulo() as i64;
            ModInt::new((val % m + m) as u32)
        }
    }

    #[allow(dead_code)]
    impl<T> ModInt<T> {
        fn build(d: u32) -> Self {
            ModInt(d, PhantomData)
        }
        pub fn zero() -> Self {
            Self::build(0)
        }
        pub fn is_zero(&self) -> bool {
            self.0 == 0
        }
    }

    #[allow(dead_code)]
    impl<T: Modulo> ModInt<T> {
        pub fn new_unchecked(d: u32) -> Self {
            Self::build(d)
        }
        pub fn new(d: u32) -> Self {
            Self::new_unchecked(d % T::modulo())
        }
        pub fn one() -> Self {
            Self::new_unchecked(1)
        }
        pub fn get(&self) -> u32 {
            self.0
        }
        pub fn pow(&self, mut n: u64) -> Self {
            let mut t = Self::one();
            let mut s = *self;
            while n > 0 {
                if n & 1 == 1 {
                    t *= s;
                }
                s *= s;
                n >>= 1;
            }
            t
        }
        pub fn inv(&self) -> Self {
            assert!(!self.is_zero());
            self.pow((T::modulo() - 2) as u64)
        }
    }
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
    use super::modint::*;
    #[allow(dead_code)]
    pub struct Precalc<T> {
        inv: Vec<ModInt<T>>,
        fact: Vec<ModInt<T>>,
        ifact: Vec<ModInt<T>>,
    }
    #[allow(dead_code)]
    impl<T: Modulo> Precalc<T> {
        pub fn new(n: usize) -> Precalc<T> {
            let mut inv = vec![ModInt::one(); n + 1];
            let mut fact = vec![ModInt::one(); n + 1];
            let mut ifact = vec![ModInt::one(); n + 1];
            for i in 2..(n + 1) {
                fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
            }
            ifact[n] = fact[n].inv();
            if n > 0 {
                inv[n] = ifact[n] * fact[n - 1];
            }
            for i in (1..n).rev() {
                ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
                inv[i] = ifact[i] * fact[i - 1];
            }
            Precalc {
                inv: inv,
                fact: fact,
                ifact: ifact,
            }
        }
        pub fn inv(&self, n: usize) -> ModInt<T> {
            assert!(n > 0);
            self.inv[n]
        }
        pub fn fact(&self, n: usize) -> ModInt<T> {
            self.fact[n]
        }
        pub fn ifact(&self, n: usize) -> ModInt<T> {
            self.ifact[n]
        }
        pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[n - k]
        }
        pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[k] * self.ifact[n - k]
        }
    }
}
// ---------- end Precalc ----------

use modint::*;
type M = ModInt<StaticMod>;

// ---------- begin segment tree Point Update Range Query ----------
pub struct SegmentTreePURQ<T, F> {
    n: usize,
    size: usize,
    data: Vec<T>,
    e: T,
    op: F,
}

impl<T, F> SegmentTreePURQ<T, F>
where
    T: Clone,
    F: Fn(&T, &T) -> T,
{
    pub fn new(n: usize, e: T, op: F) -> Self {
        assert!(n > 0);
        let size = n.next_power_of_two();
        let data = vec![e.clone(); 2 * size];
        SegmentTreePURQ {
            n,
            size,
            data,
            e,
            op,
        }
    }
    pub fn update_tmp(&mut self, x: usize, v: T) {
        assert!(x < self.n);
        self.data[x + self.size] = v;
    }
    pub fn update_all(&mut self) {
        for i in (1..self.size).rev() {
            self.data[i] = (self.op)(&self.data[2 * i], &self.data[2 * i + 1]);
        }
    }
    pub fn update(&mut self, x: usize, v: T) {
        assert!(x < self.n);
        let mut x = x + self.size;
        self.data[x] = v;
        x >>= 1;
        while x > 0 {
            self.data[x] = (self.op)(&self.data[2 * x], &self.data[2 * x + 1]);
            x >>= 1;
        }
    }
    pub fn find(&self, l: usize, r: usize) -> T {
        assert!(l <= r && r <= self.n);
        if l == r {
            return self.e.clone();
        }
        let mut l = self.size + l;
        let mut r = self.size + r;
        let mut x = self.e.clone();
        let mut y = self.e.clone();
        while l < r {
            if l & 1 == 1 {
                x = (self.op)(&x, &self.data[l]);
                l += 1;
            }
            if r & 1 == 1 {
                r -= 1;
                y = (self.op)(&self.data[r], &y);
            }
            l >>= 1;
            r >>= 1;
        }
        (self.op)(&x, &y)
    }
    pub fn max_right<P>(&self, l: usize, f: P) -> usize
    where
        P: Fn(&T) -> bool,
    {
        assert!(l <= self.n);
        assert!(f(&self.e));
        if l == self.n {
            return self.n;
        }
        let mut l = l + self.size;
        let mut sum = self.e.clone();
        while {
            l >>= l.trailing_zeros();
            let v = (self.op)(&sum, &self.data[l]);
            if !f(&v) {
                while l < self.size {
                    l <<= 1;
                    let v = (self.op)(&sum, &self.data[l]);
                    if f(&v) {
                        sum = v;
                        l += 1;
                    }
                }
                return l - self.size;
            }
            sum = v;
            l += 1;
            l.count_ones() > 1
        } {}
        self.n
    }
    pub fn min_left<P>(&self, r: usize, f: P) -> usize
    where
        P: Fn(&T) -> bool,
    {
        assert!(r <= self.n);
        assert!(f(&self.e));
        if r == 0 {
            return 0;
        }
        let mut r = r + self.size;
        let mut sum = self.e.clone();
        while {
            r -= 1;
            while r > 1 && r & 1 == 1 {
                r >>= 1;
            }
            let v = (self.op)(&self.data[r], &sum);
            if !f(&v) {
                while r < self.size {
                    r = 2 * r + 1;
                    let v = (self.op)(&self.data[r], &sum);
                    if f(&v) {
                        sum = v;
                        r -= 1;
                    }
                }
                return r + 1 - self.size;
            }
            sum = v;
            (r & (!r + 1)) != r
        } {}
        0
    }
}
// ---------- end segment tree Point Update Range Query ----------
0