結果
| 問題 | No.2272 多項式乗算 mod 258280327 |
| コンテスト | |
| ユーザー |
k1suxu
|
| 提出日時 | 2023-04-14 22:50:20 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 11,322 bytes |
| コンパイル時間 | 3,268 ms |
| コンパイル使用メモリ | 266,168 KB |
| 実行使用メモリ | 38,488 KB |
| 最終ジャッジ日時 | 2024-10-10 13:50:05 |
| 合計ジャッジ時間 | 5,835 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 27 WA * 6 |
ソースコード
// #pragma GCC target("avx")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (int)n; i++)
#define FOR(n) for(int i = 0; i < (int)n; i++)
#define repi(i,a,b) for(int i = (int)a; i < (int)b; i++)
#define all(x) x.begin(),x.end()
//#define mp make_pair
#define vi vector<int>
#define vvi vector<vi>
#define vvvi vector<vvi>
#define vvvvi vector<vvvi>
#define pii pair<int,int>
#define vpii vector<pair<int,int>>
template<typename T>
void chmax(T &a, const T &b) {a = (a > b? a : b);}
template<typename T>
void chmin(T &a, const T &b) {a = (a < b? a : b);}
using ll = long long;
using ld = long double;
using ull = unsigned long long;
const ll INF = numeric_limits<long long>::max() / 2;
const ld pi = 3.1415926535897932384626433832795028;
const ll mod = 998244353;
int dx[] = {1, 0, -1, 0, -1, -1, 1, 1};
int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
#define int long long
template<int MOD>
struct Modular_Int {
int x;
Modular_Int() = default;
Modular_Int(int x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {}
int val() const {
return (x%MOD+MOD)%MOD;
}
int get_mod() const {
return MOD;
}
Modular_Int<MOD>& operator^=(int d) {
Modular_Int<MOD> ret(1);
int nx = x;
while(d) {
if(d&1) ret *= nx;
(nx *= nx) %= MOD;
d >>= 1;
}
*this = ret;
return *this;
}
Modular_Int<MOD> operator^(int d) const {return Modular_Int<MOD>(*this) ^= d;}
Modular_Int<MOD> pow(int d) const {return Modular_Int<MOD>(*this) ^= d;}
//use this basically
Modular_Int<MOD> inv() const {
return Modular_Int<MOD>(*this) ^ (MOD-2);
}
//only if the module number is not prime
//Don't use. This is broken.
// Modular_Int<MOD> inv() const {
// int a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0;
// while(b) {
// int t = a/b;
// a -= t*b, swap(a, b);
// u -= t*v, swap(u, v);
// }
// return Modular_Int<MOD>(u);
// }
Modular_Int<MOD>& operator+=(const Modular_Int<MOD> other) {
if((x += other.x) >= MOD) x -= MOD;
return *this;
}
Modular_Int<MOD>& operator-=(const Modular_Int<MOD> other) {
if((x -= other.x) < 0) x += MOD;
return *this;
}
Modular_Int<MOD>& operator*=(const Modular_Int<MOD> other) {
int z = x;
z *= other.x;
z %= MOD;
x = z;
if(x < 0) x += MOD;
return *this;
}
Modular_Int<MOD>& operator/=(const Modular_Int<MOD> other) {
return *this = *this * other.inv();
}
Modular_Int<MOD>& operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Modular_Int<MOD>& operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Modular_Int<MOD> operator+(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) += other;}
Modular_Int<MOD> operator-(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) -= other;}
Modular_Int<MOD> operator*(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) *= other;}
Modular_Int<MOD> operator/(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) /= other;}
Modular_Int<MOD>& operator+=(const int other) {Modular_Int<MOD> other_(other); *this += other_; return *this;}
Modular_Int<MOD>& operator-=(const int other) {Modular_Int<MOD> other_(other); *this -= other_; return *this;}
Modular_Int<MOD>& operator*=(const int other) {Modular_Int<MOD> other_(other); *this *= other_; return *this;}
Modular_Int<MOD>& operator/=(const int other) {Modular_Int<MOD> other_(other); *this /= other_; return *this;}
Modular_Int<MOD> operator+(const int other) const {return Modular_Int<MOD>(*this) += other;}
Modular_Int<MOD> operator-(const int other) const {return Modular_Int<MOD>(*this) -= other;}
Modular_Int<MOD> operator*(const int other) const {return Modular_Int<MOD>(*this) *= other;}
Modular_Int<MOD> operator/(const int other) const {return Modular_Int<MOD>(*this) /= other;}
bool operator==(const Modular_Int<MOD> other) const {return (*this).val() == other.val();}
bool operator!=(const Modular_Int<MOD> other) const {return (*this).val() != other.val();}
bool operator==(const int other) const {return (*this).val() == other;}
bool operator!=(const int other) const {return (*this).val() != other;}
Modular_Int<MOD> operator-() const {return Modular_Int<MOD>(0LL)-Modular_Int<MOD>(*this);}
//入れ子にしたい
// friend constexpr istream& operator>>(istream& is, mint& x) noexcept {
// int X;
// is >> X;
// x = X;
// return is;
// }
// friend constexpr ostream& operator<<(ostream& os, mint& x) {
// os << x.val();
// return os;
// }
};
// const int MOD_VAL = 1e9+7;
const int MOD_VAL = 258280327;
using mint = Modular_Int<MOD_VAL>;
istream& operator>>(istream& is, mint& x) {
int X;
is >> X;
x = X;
return is;
}
ostream& operator<<(ostream& os, mint& x) {
os << x.val();
return os;
}
// istream& operator<<(istream& is, mint &a) {
// int x;
// is >> x;
// a = mint(x);
// return is;
// }
// ostream& operator<<(ostream& os, mint a) {
// os << a.val();
// return os;
// }
// vector<mint> f = {1}, rf = {1};
// void init(int n) {
// f.resize(n, 0);
// rf.resize(n, 0);
// f[0] = 1;
// repi(i, 1, n) f[i] = (f[i - 1] * i);
// repi(i, 0, n) rf[i] = f[i].inv();
// }
// mint P(int n, int k) {
// assert(n>=k);
// while(n > f.size()-1) {
// f.push_back(f.back() * f.size());
// rf.push_back(f.back().inv());
// }
// return f[n] * f[n-k];
// }
// mint C(int n, int k) {
// assert(n>=k);
// while(n > f.size()-1) {
// f.push_back(f.back() * f.size());
// rf.push_back(f.back().inv());
// }
// return f[n]*rf[n-k]*rf[k];
// }
// mint H(int n, int k) {
// assert(n>=1);
// return C(n+k-1, k);
// }
// mint Cat(int n) {
// return C(2*n, n)-C(2*n, n-1);
// }
namespace FastFourierTransform {
using real = double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector< C > rts = { {0, 0},
{1, 0} };
vector< int > rev = {0, 1};
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while(base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector< C > &a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) {
int need = (int) a.size() + (int) b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < sz; i++) {
int x = (i < (int) a.size() ? a[i] : 0);
int y = (i < (int) b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for(int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector< int64_t > ret(need);
for(int i = 0; i < need; i++) {
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
};
template< typename T >
struct ArbitraryModConvolutionLong {
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolutionLong() = default;
vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) {
if(need == -1) need = a.size() + b.size() - 1;
int nbase = 0;
while((1 << nbase) < need) nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < a.size(); i++) {
fa[i] = C(a[i].x & ((1 << 19) - 1), a[i].x >> 19);
}
fft(fa, sz);
vector< C > fb(sz);
if(a == b) {
fb = fa;
} else {
for(int i = 0; i < b.size(); i++) {
fb[i] = C(b[i].x & ((1 << 19) - 1), b[i].x >> 19);
}
fft(fb, sz);
}
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if(i != j) {
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector< T > ret(need);
auto mul1 = T(2).pow(19);
auto mul2 = T(2).pow(38);
for(int i = 0; i < need; i++) {
int64_t aa = llround(fa[i].x);
int64_t bb = llround(fb[i].x);
int64_t cc = llround(fa[i].y);
aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
ret[i] = (mul1 * bb) + (mul2 * cc) + aa;
}
return ret;
}
};
void solve() {
int n;
cin >> n;
ArbitraryModConvolutionLong<mint> convolution;
vector<mint> f(n+1);
FOR(n+1) cin >> f[i];
int m;
cin >> m;
vector<mint> g(m+1);
FOR(m+1) cin >> g[i];
vector<mint> ans = convolution.multiply(f, g);
cout << ans.size() - 1 << endl;
for(auto e : ans) cout << e << " "; cout << "\n";
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
solve();
return 0;
}
k1suxu