結果
問題 | No.2272 多項式乗算 mod 258280327 |
ユーザー | k1suxu |
提出日時 | 2023-04-14 22:50:20 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,322 bytes |
コンパイル時間 | 3,268 ms |
コンパイル使用メモリ | 266,168 KB |
実行使用メモリ | 38,488 KB |
最終ジャッジ日時 | 2024-10-10 13:50:05 |
合計ジャッジ時間 | 5,835 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 1 ms
5,248 KB |
testcase_24 | AC | 4 ms
5,248 KB |
testcase_25 | AC | 12 ms
5,504 KB |
testcase_26 | AC | 11 ms
5,504 KB |
testcase_27 | AC | 24 ms
7,808 KB |
testcase_28 | AC | 23 ms
7,808 KB |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
ソースコード
// #pragma GCC target("avx") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; #define rep(i,n) for(int i = 0; i < (int)n; i++) #define FOR(n) for(int i = 0; i < (int)n; i++) #define repi(i,a,b) for(int i = (int)a; i < (int)b; i++) #define all(x) x.begin(),x.end() //#define mp make_pair #define vi vector<int> #define vvi vector<vi> #define vvvi vector<vvi> #define vvvvi vector<vvvi> #define pii pair<int,int> #define vpii vector<pair<int,int>> template<typename T> void chmax(T &a, const T &b) {a = (a > b? a : b);} template<typename T> void chmin(T &a, const T &b) {a = (a < b? a : b);} using ll = long long; using ld = long double; using ull = unsigned long long; const ll INF = numeric_limits<long long>::max() / 2; const ld pi = 3.1415926535897932384626433832795028; const ll mod = 998244353; int dx[] = {1, 0, -1, 0, -1, -1, 1, 1}; int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; #define int long long template<int MOD> struct Modular_Int { int x; Modular_Int() = default; Modular_Int(int x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {} int val() const { return (x%MOD+MOD)%MOD; } int get_mod() const { return MOD; } Modular_Int<MOD>& operator^=(int d) { Modular_Int<MOD> ret(1); int nx = x; while(d) { if(d&1) ret *= nx; (nx *= nx) %= MOD; d >>= 1; } *this = ret; return *this; } Modular_Int<MOD> operator^(int d) const {return Modular_Int<MOD>(*this) ^= d;} Modular_Int<MOD> pow(int d) const {return Modular_Int<MOD>(*this) ^= d;} //use this basically Modular_Int<MOD> inv() const { return Modular_Int<MOD>(*this) ^ (MOD-2); } //only if the module number is not prime //Don't use. This is broken. // Modular_Int<MOD> inv() const { // int a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0; // while(b) { // int t = a/b; // a -= t*b, swap(a, b); // u -= t*v, swap(u, v); // } // return Modular_Int<MOD>(u); // } Modular_Int<MOD>& operator+=(const Modular_Int<MOD> other) { if((x += other.x) >= MOD) x -= MOD; return *this; } Modular_Int<MOD>& operator-=(const Modular_Int<MOD> other) { if((x -= other.x) < 0) x += MOD; return *this; } Modular_Int<MOD>& operator*=(const Modular_Int<MOD> other) { int z = x; z *= other.x; z %= MOD; x = z; if(x < 0) x += MOD; return *this; } Modular_Int<MOD>& operator/=(const Modular_Int<MOD> other) { return *this = *this * other.inv(); } Modular_Int<MOD>& operator++() { x++; if (x == MOD) x = 0; return *this; } Modular_Int<MOD>& operator--() { if (x == 0) x = MOD; x--; return *this; } Modular_Int<MOD> operator+(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) += other;} Modular_Int<MOD> operator-(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) -= other;} Modular_Int<MOD> operator*(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) *= other;} Modular_Int<MOD> operator/(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) /= other;} Modular_Int<MOD>& operator+=(const int other) {Modular_Int<MOD> other_(other); *this += other_; return *this;} Modular_Int<MOD>& operator-=(const int other) {Modular_Int<MOD> other_(other); *this -= other_; return *this;} Modular_Int<MOD>& operator*=(const int other) {Modular_Int<MOD> other_(other); *this *= other_; return *this;} Modular_Int<MOD>& operator/=(const int other) {Modular_Int<MOD> other_(other); *this /= other_; return *this;} Modular_Int<MOD> operator+(const int other) const {return Modular_Int<MOD>(*this) += other;} Modular_Int<MOD> operator-(const int other) const {return Modular_Int<MOD>(*this) -= other;} Modular_Int<MOD> operator*(const int other) const {return Modular_Int<MOD>(*this) *= other;} Modular_Int<MOD> operator/(const int other) const {return Modular_Int<MOD>(*this) /= other;} bool operator==(const Modular_Int<MOD> other) const {return (*this).val() == other.val();} bool operator!=(const Modular_Int<MOD> other) const {return (*this).val() != other.val();} bool operator==(const int other) const {return (*this).val() == other;} bool operator!=(const int other) const {return (*this).val() != other;} Modular_Int<MOD> operator-() const {return Modular_Int<MOD>(0LL)-Modular_Int<MOD>(*this);} //入れ子にしたい // friend constexpr istream& operator>>(istream& is, mint& x) noexcept { // int X; // is >> X; // x = X; // return is; // } // friend constexpr ostream& operator<<(ostream& os, mint& x) { // os << x.val(); // return os; // } }; // const int MOD_VAL = 1e9+7; const int MOD_VAL = 258280327; using mint = Modular_Int<MOD_VAL>; istream& operator>>(istream& is, mint& x) { int X; is >> X; x = X; return is; } ostream& operator<<(ostream& os, mint& x) { os << x.val(); return os; } // istream& operator<<(istream& is, mint &a) { // int x; // is >> x; // a = mint(x); // return is; // } // ostream& operator<<(ostream& os, mint a) { // os << a.val(); // return os; // } // vector<mint> f = {1}, rf = {1}; // void init(int n) { // f.resize(n, 0); // rf.resize(n, 0); // f[0] = 1; // repi(i, 1, n) f[i] = (f[i - 1] * i); // repi(i, 0, n) rf[i] = f[i].inv(); // } // mint P(int n, int k) { // assert(n>=k); // while(n > f.size()-1) { // f.push_back(f.back() * f.size()); // rf.push_back(f.back().inv()); // } // return f[n] * f[n-k]; // } // mint C(int n, int k) { // assert(n>=k); // while(n > f.size()-1) { // f.push_back(f.back() * f.size()); // rf.push_back(f.back().inv()); // } // return f[n]*rf[n-k]*rf[k]; // } // mint H(int n, int k) { // assert(n>=1); // return C(n+k-1, k); // } // mint Cat(int n) { // return C(2*n, n)-C(2*n, n-1); // } namespace FastFourierTransform { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C &c) const { return C(x + c.x, y + c.y); } inline C operator-(const C &c) const { return C(x - c.x, y - c.y); } inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector< C > rts = { {0, 0}, {1, 0} }; vector< int > rev = {0, 1}; void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector< C > &a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) { int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector< int64_t > ret(need); for(int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; template< typename T > struct ArbitraryModConvolutionLong { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolutionLong() = default; vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) { if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < a.size(); i++) { fa[i] = C(a[i].x & ((1 << 19) - 1), a[i].x >> 19); } fft(fa, sz); vector< C > fb(sz); if(a == b) { fb = fa; } else { for(int i = 0; i < b.size(); i++) { fb[i] = C(b[i].x & ((1 << 19) - 1), b[i].x >> 19); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector< T > ret(need); auto mul1 = T(2).pow(19); auto mul2 = T(2).pow(38); for(int i = 0; i < need; i++) { int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = (mul1 * bb) + (mul2 * cc) + aa; } return ret; } }; void solve() { int n; cin >> n; ArbitraryModConvolutionLong<mint> convolution; vector<mint> f(n+1); FOR(n+1) cin >> f[i]; int m; cin >> m; vector<mint> g(m+1); FOR(m+1) cin >> g[i]; vector<mint> ans = convolution.multiply(f, g); cout << ans.size() - 1 << endl; for(auto e : ans) cout << e << " "; cout << "\n"; } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); solve(); return 0; }