結果
| 問題 |
No.2272 多項式乗算 mod 258280327
|
| コンテスト | |
| ユーザー |
noya2
|
| 提出日時 | 2023-04-14 22:53:44 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 12,112 bytes |
| コンパイル時間 | 5,557 ms |
| コンパイル使用メモリ | 283,136 KB |
| 最終ジャッジ日時 | 2025-02-12 07:37:04 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 33 |
ソースコード
#line 1 "c.cpp"
#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for (int i = 0; i < int(n); ++i)
#define repp(i,n,m) for (int i = m; i < int(n); ++i)
#define reb(i,n) for (int i = int(n)-1; i >= 0; --i)
#define all(v) v.begin(),v.end()
using namespace std;
using namespace atcoder;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using P = pair<int, int>;
using PL = pair<long long, long long>;
using pdd = pair<long double, long double>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
template<class T>istream &operator>>(istream &is,vector<T> &v){for(auto &e:v)is>>e;return is;}
template<typename T>bool range(T a,T b,T x){return (a<=x&&x<b);}
template<typename T>bool rrange(T a,T b,T c,T d,T x,T y){return (range(a,c,x)&&range(b,d,y));}
template<typename T> T rev(const T& str_or_vec){T res = str_or_vec; reverse(res.begin(),res.end()); return res; }
template<typename T>bool chmin(T &a,const T &b){if(a>b){a=b;return true;}return false;}
template<typename T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;}
template<typename T>void uniq(vector<T> &v){sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());}
template<typename T1, typename T2>void print(pair<T1,T2> a);
template<typename T>void print(vector<T> v);
template<typename T>void print(vector<vector<T>> v);
void print(){ putchar(' '); }
void print(bool a){ printf("%d", a); }
void print(int a){ printf("%d", a); }
void print(long a){ printf("%ld", a); }
void print(long long a){ printf("%lld", a); }
void print(char a){ printf("%c", a); }
void print(char a[]){ printf("%s", a); }
void print(const char a[]){ printf("%s", a); }
void print(long double a){ printf("%.15Lf", a); }
void print(const string& a){ for(auto&& i : a) print(i); }
void print(unsigned int a){ printf("%u", a); }
void print(unsigned long long a) { printf("%llu", a); }
template<class T> void print(const T& a){ cout << a; }
int out(){ putchar('\n'); return 0; }
template<class T> int out(const T& t){ print(t); putchar('\n'); return 0; }
template<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }
template<typename T1,typename T2>void print(pair<T1,T2> a){print(a.first);print(),print(a.second);}
template<typename T>void print(vector<T> v){for(auto ite=v.begin();ite!=v.end();){print(*ite);if(++ite!=v.end())print();}}
template<typename T>void print(vector<vector<T>> v){for(auto ite=v.begin();ite!=v.end();){print(*ite);if(++ite!=v.end())out();}}
void yes(){out("Yes");}
void no (){out("No");}
void yn (bool t){if(t)yes();else no();}
void fast_io(){cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20);}
void o(){out("!?");}
namespace noya2{
const int INF = 1001001007;
const long long mod1 = 998244353;
const long long mod2 = 1000000007;
const long long inf = 2e18;
const long double pi = 3.14159265358979323;
const long double eps = 1e-7;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";
} // namespace noya2
using namespace noya2;
using mint = modint998244353;
//using mint = modint1000000007;
//using mint = modint;
void out(mint a){out(a.val());}
void out(vector<mint> a){vector<ll> b(a.size()); rep(i,a.size()) b[i] = a[i].val(); out(b);}
void out(vector<vector<mint>> a){for (auto v : a) out(v);}
istream &operator>>(istream &is,vector<mint> &v){for(auto &e:v){ll _x;is>>_x;e=_x;}return is;}
#line 2 "FPS_arbitary_mod.hpp"
#line 2 "NTT.hpp"
#line 4 "NTT.hpp"
template<long long m>
struct NTT{
using mint = static_modint<m>;
NTT(){init();};
static void FFT(vector<mint> &a){
int n = a.size();
int siz = 1;
while (siz < n) siz <<= 1;
a.resize(siz);
fft(a,1);
}
static void IFFT(vector<mint> &a){
int n = a.size();
int siz = 1;
while (siz < n) siz <<= 1;
mint div = mint(siz).inv();
a.resize(siz);
fft(a,-1);
for (auto &x : a) x *= div;
}
static void DFT(vector<mint> &a, int inv){fft(a,inv);}
static vector<long long> multiply(vector<long long> a, vector<long long> b){
vector<mint> na(a.size()), nb(b.size());
for (int i = 0; i < (int)a.size(); i++) na[i] = a[i];
for (int i = 0; i < (int)b.size(); i++) nb[i] = b[i];
vector<mint> nc = multiply(na,nb);
vector<long long> c(nc.size());
for (int i = 0; i < (int)nc.size(); i++) c[i] = nc[i].val();
return c;
}
static vector<mint> multiply(vector<mint> a, vector<mint> b){
int n = a.size() + b.size() - 1;
int siz = 1;
while (siz < n) siz <<= 1;
a.resize(siz), b.resize(siz);
FFT(a), FFT(b);
for (int i = 0; i < siz; i++) a[i] *= b[i];
IFFT(a);
a.resize(n);
return a;
}
private:
static static_modint<m> g;
static int limit;
static vector<static_modint<m>>root, inv_root;
static constexpr mint primitive_root(const long long &mo){
if (mo == 2) return mint(1);
if (mo == 167772161) return mint(3);
if (mo == 469762049) return mint(3);
if (mo == 754974721) return mint(11);
if (mo == 998244353) return mint(3);
if (mo == 1224736769)return mint(3);
return mint(); // atode kaku
}
static void init(){
if (!root.empty()) return ;
g = primitive_root(m);
long long now = m-1;
while ((now & 1) == 0) now >>= 1, limit++;
root.resize(limit+1,1), inv_root.resize(limit+1,1);
root[limit] = g.pow(now), inv_root[limit] /= root[limit];
for(int i = limit-1; i >= 0; i--){
root[i] = root[i+1] * root[i+1];
inv_root[i] = inv_root[i+1] * inv_root[i+1];
}
}
static int bits_msb(int v){
v = v | (v >> 1);
v = v | (v >> 2);
v = v | (v >> 4);
v = v | (v >> 8);
v = v | (v >> 16);
return v ^ (v >> 1);
}
static int pre(int v, int n){
return v ^ (n - bits_msb(v));
}
static void fft(vector<mint> &a, int inv){
init();
int n = a.size();
if (n == 1) return ;
int d = 0;
while ((n >> d & 1) == 0) d++;
vector<int> idx(n);
idx[n-1] = n-1;
for (int i = n-2; i >= 0; i--) idx[i] = pre(idx[i+1],n);
vector<mint> na = a;
for (int i = 0; i < n; i++) a[i] = na[idx[i]];
for (int i = 0; i < d; i++){
int width = 1 << (i+1);
vector<mint> gp(width/2,1);
if (inv == 1) for (int j = 0; j < width/2-1; j++) gp[j+1] = gp[j] * root[i+1];
if (inv == -1) for (int j = 0; j < width/2-1; j++) gp[j+1] = gp[j] * inv_root[i+1];
for (int j = 0; j < n; j += width){
for (int k = 0; k < width/2; k++){
mint lhs = a[j+k], rhs = a[j+k+width/2] * gp[k];
a[j+k] = lhs + rhs;
a[j+k+width/2] = lhs - rhs;
}
}
}
}
};
template<long long m>
int NTT<m>::limit=0;
template<long long m>
vector<static_modint<m>>NTT<m>::root=vector<static_modint<m>>();
template<long long m>
vector<static_modint<m>>NTT<m>::inv_root=vector<static_modint<m>>();
template<long long m>
static_modint<m>NTT<m>::g=static_modint<m>();
#line 5 "FPS_arbitary_mod.hpp"
namespace noya2{
using namespace std;
template <typename mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using vector<mint>::operator=;
using FPS = FormalPowerSeries;
void shrink(){while (!(*this).empty() && (*this).back() == mint(0)) (*this).pop_back();}
FPS operator+(const mint &r){return FPS(*this) += r;}
FPS operator-(const mint &r){return FPS(*this) -= r;}
FPS operator*(const mint &r){return FPS(*this) *= r;}
FPS operator<<(const int &d){return FPS(*this) <<= d;}
FPS operator>>(const int &d){return FPS(*this) >>= d;}
FPS operator+(const FPS &r){return FPS(*this) += r;}
FPS operator-(const FPS &r){return FPS(*this) -= r;}
FPS operator*(const FPS &r){return FPS(*this) *= r;}
FPS operator-() const {
FPS res(*this);
for (mint &x : res) x = -x;
return res;
}
FPS &operator+=(const mint &r){
if ((*this).empty()) (*this).resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const mint &r){
if ((*this).empty()) (*this).resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &r){
for (mint &x : *this) x *= r;
return *this;
}
FPS &operator<<=(const int &d){
(*this).insert((*this).begin(),d,mint(0));
return *this;
}
FPS &operator>>=(const int &d){
(*this).erase((*this).begin(),(*this).begin()+d);
return *this;
}
FPS &operator+=(const FPS &r){
const int n = (*this).size(), m = r.size();
(*this).resize(max(n,m));
for (int i = 0; i < m; i++) (*this)[i] += r[i];
return *this;
}
FPS &operator-=(const FPS &r){
const int n = (*this).size(), m = r.size();
(*this).resize(max(n,m));
for (int i = 0; i < m; i++) (*this)[i] -= r[i];
return *this;
}
vector<mint> arbitrary_mod_convolution(vector<mint> ap, vector<mint> bp){
const ll MOD = mint::mod();
int sa = ap.size(), sb = bp.size();
vector<ll> a(sa), b(sb);
for (int i = 0; i < sa; i++) a[i] = ap[i].val();
for (int j = 0; j < sb; j++) b[j] = bp[j].val();
static constexpr ll m1 = 167772161, m2 = 469762049, m3 = 1224736769;
static constexpr ll m1_inv_m2 = 104391568, m12_inv_m3 = 721017874;
const ll m12_mod = 78812994116517889LL % MOD;
auto c1 = NTT<m1>::multiply(a,b);
auto c2 = NTT<m2>::multiply(a,b);
auto c3 = NTT<m3>::multiply(a,b);
vector<mint> res(c1.size());
for (int i = 0; i < (int)res.size(); i++){
ll t1 = c1[i];
ll t2 = (c2[i] - c1[i]) * m1_inv_m2 % m2;
if (t2 < 0) t2 += m2;
ll t3 = (c3[i] - (t1 + t2 * m1) % m3) * m12_inv_m3 % m3;
if (t3 < 0) t3 += m3;
res[i] = (t1 + t2 * m1 + t3 * m12_mod);
}
return res;
}
FPS &operator*=(const FPS &r){
(*this) = arbitrary_mod_convolution((*this),r);
//(*this) = NTT<mint::mod()>::multiply((*this),r);
return *this;
}
mint eval(const mint &x) const {
mint res = 0, w = 1;
for (auto &e : *this) res += e * w, w *= x;
return res;
}
FPS diff() const {
const int n = (*this).size();
FPS res(max(0,n-1));
for (int i = 1; i < n; i++) res[i-1] = (*this)[i] * mint(i);
return res;
}
FPS integral() const {
const int n = (*this).size();
vector<mint> invs(n+1);
invs[1] = mint(1);
for (int i = 2; i <= n; i++) invs[i] = -invs[mint::mod()%i] * mint(mint::mod()/i);
FPS res(n+1);
for (int i = 1; i <= n; i++) res[i] = (*this)[i-1] * invs[i];
return res;
}
FPS log(int d = -1) const {
const int n = (*this).size();
if (d == -1) d = n;
FPS res = diff() * mint(d).inv();
res.resize(d-1);
return res.integral();
}
};
template<typename T>
void fps_out(const FormalPowerSeries<T> &a){
vector<long long> _a(a.size());
for (int i = 0; i < (int)a.size(); i++) _a[i] = a[i].val();
out(_a);
}
} // namespace noya2
#line 78 "c.cpp"
const ll mod = 258280327;
using fps = FormalPowerSeries<static_modint<mod>>;
void solve(){
int n; cin >> n;
fps f(n+1);
rep(i,n+1){
ll x; cin >> x;
f[i] = x;
}
int m; cin >> m;
fps g(m+1);
rep(i,m+1){
ll x; cin >> x;
g[i] = x;
}
fps_out(f*g);
}
int main(){
fast_io();
int t = 1; //cin >> t;
while(t--) solve();
}
noya2