結果
| 問題 |
No.2273 一点乗除区間積
|
| コンテスト | |
| ユーザー |
siganai
|
| 提出日時 | 2023-04-14 22:55:21 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 13,132 bytes |
| コンパイル時間 | 2,408 ms |
| コンパイル使用メモリ | 216,208 KB |
| 最終ジャッジ日時 | 2025-02-12 07:39:33 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 17 TLE * 8 |
ソースコード
#line 1 "main.cpp"
//#pragma GCC target("avx")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vpii = vector<pii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T, vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll GCD(ll a,ll b) { if(a == 0 || b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);}
ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(30);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){
in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){
ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
static const double PI = 3.1415926535897932;
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
//constexpr int mod = 1000000007;
constexpr int mod = 998244353;
#line 2 "library/modint/barrett-reduction.hpp"
struct Barrett {
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
u32 m;
u64 im;
Barrett() : m(), im() {}
Barrett(int n) : m(n), im(u64(-1) / m + 1) {}
constexpr inline i64 quo(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
return m <= r ? x - 1 : x;
}
constexpr inline i64 rem(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
return m <= r ? r + m : r;
}
constexpr inline pair<i64, int> quorem(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
if (m <= r) return {x - 1, r + m};
return {x, r};
}
constexpr inline i64 pow(u64 n, i64 p) {
u32 a = rem(n), r = m == 1 ? 0 : 1;
while (p) {
if (p & 1) r = rem(u64(r) * a);
a = rem(u64(a) * a);
p >>= 1;
}
return r;
}
};
#line 3 "library/modint/ArbitaryModint.hpp"
struct ArbitraryModint {
int x;
ArbitraryModint():x(0) {}
ArbitraryModint(int64_t y) {
int z = y % get_mod();
if(z < 0) z += get_mod();
x = z;
}
ArbitraryModint &operator+=(const ArbitraryModint &p) {
if((x += p.x) >= get_mod()) x -= get_mod();
return *this;
}
ArbitraryModint &operator-=(const ArbitraryModint &p) {
if((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
return *this;
}
ArbitraryModint &operator*=(const ArbitraryModint &p) {
x = rem((unsigned long long)x * p.x);
return *this;
}
ArbitraryModint &operator/=(const ArbitraryModint &p) {
*this *= p.inverse();
return *this;
}
ArbitraryModint operator-() const {return ArbitraryModint(-x);};
ArbitraryModint operator+(const ArbitraryModint &p) const{
return ArbitraryModint(*this) += p;
}
ArbitraryModint operator-(const ArbitraryModint &p) const{
return ArbitraryModint(*this) -= p;
}
ArbitraryModint operator*(const ArbitraryModint &p) const{
return ArbitraryModint(*this) *= p;
}
ArbitraryModint operator/(const ArbitraryModint &p) const {
return ArbitraryModint(*this) /= p;
}
bool operator==(const ArbitraryModint &p) {return x == p.x;}
bool operator!=(const ArbitraryModint &p) {return x != p.x;}
ArbitraryModint inverse() const {
int a = x,b = get_mod(),u = 1,v = 0,t;
while(b > 0) {
t = a / b;
swap(a -= t * b,b);
swap(u -= t * v,v);
}
return ArbitraryModint(u);
}
ArbitraryModint pow(int64_t n) const {
ArbitraryModint ret(1),mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os,const ArbitraryModint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is,ArbitraryModint &a) {
int64_t t;
is >> t;
a = ArbitraryModint(t);
return (is);
}
int get() const {return x;}
inline unsigned int rem(unsigned long long p) {return barrett().rem(p);};
static inline Barrett &barrett() {
static Barrett b;
return b;
}
static inline int &get_mod() {
static int mod = 0;
return mod;
}
static void set_mod(int md) {
assert(0 < md && md <= (1LL << 30) - 1);
get_mod() = md;
barrett() = Barrett(md);
}
};
#line 87 "main.cpp"
using mint = ArbitraryModint;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
#line 2 "library/math/factorize.hpp"
vector<pair<long long,int>> prime_factorization(long long n) {
vector<pair<long long,int>> ret;
int c = 0;
while(n % 2 == 0) {
c++;
n >>= 1;
}
if(c) ret.emplace_back(2,c);
for(long long i = 3; i * i <= n; i += 2) {
c = 0;
while(n % i == 0) {
n /= i;
c++;
}
if(c) ret.emplace_back(i,c);
}
if (n != 1) ret.emplace_back(n,1);
return ret;
}
vector<long long> divisor(long long n) {
vector<long long> ret;
for(long long i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if(i * i != n) {ret.push_back(n / i);}
}
}
sort(ret.begin(),ret.end());
return ret;
}
#line 2 "library/segtree/segtree.hpp"
template <typename T, typename F>
struct segtree {
int N;
int size;
vector<T> seg;
const F f;
const T I;
segtree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {}
segtree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); }
segtree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) {
init(v.size());
for (int i = 0; i < (int)v.size(); i++) {
seg[i + size] = v[i];
}
build();
}
void init(int _N) {
N = _N;
size = 1;
while (size < N) size <<= 1;
seg.assign(2 * size, I);
}
void build() {
for (int k = size - 1; k > 0; k--) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void set(int k, T x) {
assert(0 <= k && k < N);
k += size;
seg[k] = x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void add(int k, T x) {
assert(0 <= k && k < N);
k += size;
seg[k] += x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
T get(int k) const {
assert(0 <= k && k < N);
return seg[k + size];
}
// query to [l, r)
T prod(int l, int r) {
assert(0 <= l && l <= r && r <= N);
T L = I, R = I;
for (l += size, r += size; l < r; l >>= 1, r >>= 1) {
if (l & 1) L = f(L, seg[l++]);
if (r & 1) R = f(seg[--r], R);
}
return f(L, R);
}
// check(a[l] * ... * a[r-1]) が true となる最大の r
// (右端まですべて true なら N を返す)
template <class C>
int max_right(int l, C check) {
assert(0 <= l && l <= N);
assert(check(I) == true);
if (l == N) return N;
l += size;
T sm = I;
do {
while (l % 2 == 0) l >>= 1;
if (!check(f(sm, seg[l]))) {
while (l < size) {
l = (2 * l);
if (check(f(sm, seg[l]))) {
sm = f(sm, seg[l]);
l++;
}
}
return l - size;
}
sm = f(sm, seg[l]);
l++;
} while ((l & -l) != l);
return N;
}
// check(a[l] * ... * a[r-1]) が true となる最小の l
// (左端まで true なら 0 を返す)
template <typename C>
int min_left(int r, C check) {
assert(0 <= r && r <= N);
assert(check(I) == true);
if (r == 0) return 0;
r += size;
T sm = I;
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(f(seg[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (check(f(seg[r], sm))) {
sm = f(seg[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = f(seg[r], sm);
} while ((r & -r) != r);
return 0;
}
};
#line 93 "main.cpp"
int main() {
INT(n,b,q);
mint::set_mod(b);
VEC(ll,a,n);
auto prs = prime_factorization(b);
vvl cnt(n,vl(prs.size()));
vm rem(n);
rep(i,n) {
ll now = a[i];
rep(j,prs.size()) {
int p = prs[j].first;
while(now % p == 0) {
cnt[i][j]++;
now /= p;
}
}
rem[i] = now;
}
vm init(n);
rep(i,n) init[i] = a[i];
auto op = [](mint x,mint y) {return x * y;};
segtree<mint,decltype(op)> seg(init,op,1);
rep(i,q) {
INT(j);
LL(m);
INT(l,r);
r++;
int flg = 1;
rep(k,prs.size()) if(cnt[j][k] < prs[k].second) {
flg = 0;
break;
}
if(flg && m == b) {
mint tmp = 1;
rep(k,prs.size()) {
cnt[j][k] -= prs[k].second;
tmp *= mint(prs[k].first).pow(cnt[j][k]);
}
tmp *= rem[j];
seg.set(j,tmp);
}
else {
ll now = m;
rep(k,prs.size()) {
int p = prs[k].first;
while(now % p == 0) {
cnt[j][k]++;
now /= p;
}
}
rem[j] *= now;
seg.set(j,seg.get(j)*m);
}
cout << seg.prod(l,r) << '\n';
}
}
siganai