結果

問題 No.2272 多項式乗算 mod 258280327
ユーザー noya2noya2
提出日時 2023-04-14 22:57:17
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 12,170 bytes
コンパイル時間 5,714 ms
コンパイル使用メモリ 296,584 KB
実行使用メモリ 33,700 KB
最終ジャッジ日時 2024-10-10 13:57:59
合計ジャッジ時間 10,617 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,820 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 2 ms
6,816 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 2 ms
6,820 KB
testcase_18 AC 2 ms
6,816 KB
testcase_19 AC 2 ms
6,816 KB
testcase_20 AC 2 ms
6,820 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 2 ms
6,816 KB
testcase_23 AC 2 ms
6,820 KB
testcase_24 AC 9 ms
6,820 KB
testcase_25 AC 35 ms
6,820 KB
testcase_26 AC 36 ms
6,816 KB
testcase_27 AC 77 ms
7,516 KB
testcase_28 AC 77 ms
7,564 KB
testcase_29 AC 336 ms
17,896 KB
testcase_30 AC 716 ms
33,700 KB
testcase_31 AC 731 ms
33,452 KB
testcase_32 AC 718 ms
33,536 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "c.cpp"
#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for (int i = 0; i < int(n); ++i)
#define repp(i,n,m) for (int i = m; i < int(n); ++i)
#define reb(i,n) for (int i = int(n)-1; i >= 0; --i)
#define all(v) v.begin(),v.end()
using namespace std;
using namespace atcoder;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using P = pair<int, int>;
using PL = pair<long long, long long>;
using pdd = pair<long double, long double>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
template<class T>istream &operator>>(istream &is,vector<T> &v){for(auto &e:v)is>>e;return is;}
template<typename T>bool range(T a,T b,T x){return (a<=x&&x<b);}
template<typename T>bool rrange(T a,T b,T c,T d,T x,T y){return (range(a,c,x)&&range(b,d,y));}
template<typename T> T rev(const T& str_or_vec){T res = str_or_vec; reverse(res.begin(),res.end()); return res; }
template<typename T>bool chmin(T &a,const T &b){if(a>b){a=b;return true;}return false;}
template<typename T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;}
template<typename T>void uniq(vector<T> &v){sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());}
template<typename T1, typename T2>void print(pair<T1,T2> a);
template<typename T>void print(vector<T> v);
template<typename T>void print(vector<vector<T>> v);
void print(){ putchar(' '); }
void print(bool a){ printf("%d", a); }
void print(int a){ printf("%d", a); }
void print(long a){ printf("%ld", a); }
void print(long long a){ printf("%lld", a); }
void print(char a){ printf("%c", a); }
void print(char a[]){ printf("%s", a); }
void print(const char a[]){ printf("%s", a); }
void print(long double a){ printf("%.15Lf", a); }
void print(const string& a){ for(auto&& i : a) print(i); }
void print(unsigned int a){ printf("%u", a); }
void print(unsigned long long a) { printf("%llu", a); }
template<class T> void print(const T& a){ cout << a; }
int out(){ putchar('\n'); return 0; }
template<class T> int out(const T& t){ print(t); putchar('\n'); return 0; }
template<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }
template<typename T1,typename T2>void print(pair<T1,T2> a){print(a.first);print(),print(a.second);}
template<typename T>void print(vector<T> v){for(auto ite=v.begin();ite!=v.end();){print(*ite);if(++ite!=v.end())print();}}
template<typename T>void print(vector<vector<T>> v){for(auto ite=v.begin();ite!=v.end();){print(*ite);if(++ite!=v.end())out();}}
void yes(){out("Yes");}
void no (){out("No");}
void yn (bool t){if(t)yes();else no();}
void fast_io(){cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20);}
void o(){out("!?");}

namespace noya2{

const int INF = 1001001007;
const long long mod1 = 998244353;
const long long mod2 = 1000000007;
const long long inf = 2e18;
const long double pi = 3.14159265358979323;
const long double eps = 1e-7;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";

} // namespace noya2
using namespace noya2;

using mint = modint998244353;
//using mint = modint1000000007;
//using mint = modint;
void out(mint a){out(a.val());}
void out(vector<mint> a){vector<ll> b(a.size()); rep(i,a.size()) b[i] = a[i].val(); out(b);}
void out(vector<vector<mint>> a){for (auto v : a) out(v);}
istream &operator>>(istream &is,vector<mint> &v){for(auto &e:v){ll _x;is>>_x;e=_x;}return is;}

#line 2 "FPS_arbitary_mod.hpp"

#line 2 "NTT.hpp"

#line 4 "NTT.hpp"

template<long long m>
struct NTT{
    using mint = static_modint<m>;
    NTT(){init();};
    static void FFT(vector<mint> &a){
        int n = a.size();
        int siz = 1;
        while (siz < n) siz <<= 1;
        a.resize(siz);
        fft(a,1);
    }
    static void IFFT(vector<mint> &a){
        int n = a.size();
        int siz = 1;
        while (siz < n) siz <<= 1;
        mint div = mint(siz).inv();
        a.resize(siz);
        fft(a,-1);
        for (auto &x : a) x *= div;
    }
    static void DFT(vector<mint> &a, int inv){fft(a,inv);}
    static vector<long long> multiply(vector<long long> a, vector<long long> b){
        vector<mint> na(a.size()), nb(b.size());
        for (int i = 0; i < (int)a.size(); i++) na[i] = a[i];
        for (int i = 0; i < (int)b.size(); i++) nb[i] = b[i];
        vector<mint> nc = multiply(na,nb);
        vector<long long> c(nc.size());
        for (int i = 0; i < (int)nc.size(); i++) c[i] = nc[i].val();
        return c;
    }
    static vector<mint> multiply(vector<mint> a, vector<mint> b){
        int n = a.size() + b.size() - 1;
        int siz = 1;
        while (siz < n) siz <<= 1;
        a.resize(siz), b.resize(siz);
        FFT(a), FFT(b);
        for (int i = 0; i < siz; i++) a[i] *= b[i];
        IFFT(a);
        a.resize(n);
        return a;
    }
  private:
    static static_modint<m> g;
    static int limit;
    static vector<static_modint<m>>root, inv_root;
    static constexpr mint primitive_root(const long long &mo){
        if (mo == 2)         return mint(1);
        if (mo == 167772161) return mint(3);
        if (mo == 469762049) return mint(3);
        if (mo == 754974721) return mint(11);
        if (mo == 998244353) return mint(3);
        if (mo == 1224736769)return mint(3);
        return mint(); // atode kaku
    }
    static void init(){
        if (!root.empty()) return ;
        g = primitive_root(m);
        long long now = m-1;
        while ((now & 1) == 0) now >>= 1, limit++;
        root.resize(limit+1,1), inv_root.resize(limit+1,1);
        root[limit] = g.pow(now), inv_root[limit] /= root[limit];
        for(int i = limit-1; i >= 0; i--){
            root[i] = root[i+1] * root[i+1];
            inv_root[i] = inv_root[i+1] * inv_root[i+1];
        }
    }
    static int bits_msb(int v){
        v = v | (v >>  1);
        v = v | (v >>  2);
        v = v | (v >>  4);
        v = v | (v >>  8);
        v = v | (v >> 16);
        return v ^ (v >> 1);
    }
    static int pre(int v, int n){
        return v ^ (n - bits_msb(v));
    }
    static void fft(vector<mint> &a, int inv){
        init();
        int n = a.size();
        if (n == 1) return ;
        int d = 0;
        while ((n >> d & 1) == 0) d++;
        vector<int> idx(n);
        idx[n-1] = n-1;
        for (int i = n-2; i >= 0; i--) idx[i] = pre(idx[i+1],n);
        vector<mint> na = a;
        for (int i = 0; i < n; i++) a[i] = na[idx[i]];
        for (int i = 0; i < d; i++){
            int width = 1 << (i+1);
            vector<mint> gp(width/2,1);
            if (inv ==  1) for (int j = 0; j < width/2-1; j++) gp[j+1] = gp[j] * root[i+1];
            if (inv == -1) for (int j = 0; j < width/2-1; j++) gp[j+1] = gp[j] * inv_root[i+1];
            for (int j = 0; j < n; j += width){
                for (int k = 0; k < width/2; k++){
                    mint lhs = a[j+k], rhs = a[j+k+width/2] * gp[k];
                    a[j+k] = lhs + rhs;
                    a[j+k+width/2] = lhs - rhs;
                }
            }
        }
    }
};
template<long long m>
int NTT<m>::limit=0;
template<long long m>
vector<static_modint<m>>NTT<m>::root=vector<static_modint<m>>();
template<long long m>
vector<static_modint<m>>NTT<m>::inv_root=vector<static_modint<m>>();
template<long long m>
static_modint<m>NTT<m>::g=static_modint<m>();
#line 5 "FPS_arbitary_mod.hpp"

namespace noya2{

using namespace std;

template <typename mint>
struct FormalPowerSeries : vector<mint> {
    using vector<mint>::vector;
    using vector<mint>::operator=;
    using FPS = FormalPowerSeries;
    void shrink(){while (!(*this).empty() && (*this).back() == mint(0)) (*this).pop_back();}
    FPS operator+(const mint &r){return FPS(*this) += r;}
    FPS operator-(const mint &r){return FPS(*this) -= r;}
    FPS operator*(const mint &r){return FPS(*this) *= r;}
    FPS operator<<(const int &d){return FPS(*this) <<= d;}
    FPS operator>>(const int &d){return FPS(*this) >>= d;}
    FPS operator+(const FPS &r){return FPS(*this) += r;}
    FPS operator-(const FPS &r){return FPS(*this) -= r;}
    FPS operator*(const FPS &r){return FPS(*this) *= r;}
    FPS operator-() const {
        FPS res(*this);
        for (mint &x : res) x = -x;
        return res;
    }
    FPS &operator+=(const mint &r){
        if ((*this).empty()) (*this).resize(1);
        (*this)[0] += r;
        return *this;
    }
    FPS &operator-=(const mint &r){
        if ((*this).empty()) (*this).resize(1);
        (*this)[0] -= r;
        return *this;
    }
    FPS &operator*=(const mint &r){
        for (mint &x : *this) x *= r;
        return *this;
    }
    FPS &operator<<=(const int &d){
        (*this).insert((*this).begin(),d,mint(0));
        return *this;
    }
    FPS &operator>>=(const int &d){
        (*this).erase((*this).begin(),(*this).begin()+d);
        return *this;
    }
    FPS &operator+=(const FPS &r){
        const int n = (*this).size(), m = r.size();
        (*this).resize(max(n,m));
        for (int i = 0; i < m; i++) (*this)[i] += r[i];
        return *this;
    }
    FPS &operator-=(const FPS &r){
        const int n = (*this).size(), m = r.size();
        (*this).resize(max(n,m));
        for (int i = 0; i < m; i++) (*this)[i] -= r[i];
        return *this;
    }
    vector<mint> arbitrary_mod_convolution(vector<mint> ap, vector<mint> bp){
        const ll MOD = mint::mod();
        int sa = ap.size(), sb = bp.size();
        vector<ll> a(sa), b(sb);
        for (int i = 0; i < sa; i++) a[i] = ap[i].val();
        for (int j = 0; j < sb; j++) b[j] = bp[j].val();
        static constexpr ll m1 = 167772161, m2 = 469762049, m3 = 1224736769;
        static constexpr ll m1_inv_m2 = 104391568, m12_inv_m3 = 721017874;
        const ll m12_mod = 78812994116517889LL % MOD;
        auto c1 = NTT<m1>::multiply(a,b);
        auto c2 = NTT<m2>::multiply(a,b);
        auto c3 = NTT<m3>::multiply(a,b);
        vector<mint> res(c1.size());
        for (int i = 0; i < (int)res.size(); i++){
            ll t1 = c1[i];
            ll t2 = (c2[i] - c1[i]) * m1_inv_m2 % m2;
            if (t2 < 0) t2 += m2;
            ll t3 = (c3[i] - (t1 + t2 * m1) % m3) * m12_inv_m3 % m3;
            if (t3 < 0) t3 += m3;
            res[i] = (t1 + t2 * m1 + t3 * m12_mod);
        }
        return res;
    }
    FPS &operator*=(const FPS &r){
        (*this) = arbitrary_mod_convolution((*this),r);
        //(*this) = NTT<mint::mod()>::multiply((*this),r);
        return *this;
    }
    mint eval(const mint &x) const {
        mint res = 0, w = 1;
        for (auto &e : *this) res += e * w, w *= x;
        return res;
    }
    FPS diff() const {
        const int n = (*this).size();
        FPS res(max(0,n-1));
        for (int i = 1; i < n; i++) res[i-1] = (*this)[i] * mint(i);
        return res;
    }
    FPS integral() const {
        const int n = (*this).size();
        vector<mint> invs(n+1);
        invs[1] = mint(1);
        for (int i = 2; i <= n; i++) invs[i] = -invs[mint::mod()%i] * mint(mint::mod()/i);
        FPS res(n+1);
        for (int i = 1; i <= n; i++) res[i] = (*this)[i-1] * invs[i];
        return res;
    }
    FPS log(int d = -1) const {
        const int n = (*this).size();
        if (d == -1) d = n;
        FPS res = diff() * mint(d).inv();
        res.resize(d-1);
        return res.integral();
    }
};

template<typename T>
void fps_out(const FormalPowerSeries<T> &a){
    vector<long long> _a(a.size());
    for (int i = 0; i < (int)a.size(); i++) _a[i] = a[i].val();
    out(_a);
}

} // namespace noya2
#line 78 "c.cpp"
const ll mod = 258280327;
using fps = FormalPowerSeries<static_modint<mod>>;

void solve(){
    int n; cin >> n;
    fps f(n+1);
    rep(i,n+1){
        ll x; cin >> x;
        f[i] = x;
    }
    int m; cin >> m;
    fps g(m+1);
    rep(i,m+1){
        ll x; cin >> x;
        g[i] = x;
    }
    out(n+m);
    fps ans = f*g;
    ans.resize(n+m+1,0);
    fps_out(f*g);
}


int main(){
    fast_io();
    int t = 1; //cin >> t;
    while(t--) solve();
}
0