結果

問題 No.2273 一点乗除区間積
ユーザー siganaisiganai
提出日時 2023-04-14 23:01:40
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 13,496 bytes
コンパイル時間 2,848 ms
コンパイル使用メモリ 223,584 KB
実行使用メモリ 13,312 KB
最終ジャッジ日時 2024-10-10 14:02:56
合計ジャッジ時間 4,400 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 AC 1 ms
5,248 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 AC 1 ms
5,248 KB
testcase_12 WA -
testcase_13 WA -
testcase_14 AC 2 ms
5,248 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 99 ms
13,312 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 AC 75 ms
7,696 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
//#pragma GCC target("avx")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>

#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vpii = vector<pii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T, vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll GCD(ll a,ll b) { if(a == 0 || b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);}
ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(30);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){
    in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){
    ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
static const double PI = 3.1415926535897932;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
//constexpr int mod = 1000000007;
constexpr int mod = 998244353;
#line 2 "library/modint/barrett-reduction.hpp"
struct Barrett {
    using u32 = unsigned int;
    using i64 = long long;
    using u64 = unsigned long long;
    u32 m;
    u64 im;
    Barrett() : m(), im() {}
    Barrett(int n) : m(n), im(u64(-1) / m + 1) {}
    constexpr inline i64 quo(u64 n) {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        return m <= r ? x - 1 : x;
    }
    constexpr inline i64 rem(u64 n) {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        return m <= r ? r + m : r;
    }
    constexpr inline pair<i64, int> quorem(u64 n) {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        if (m <= r) return {x - 1, r + m};
        return {x, r};
    }
    constexpr inline i64 pow(u64 n, i64 p) {
        u32 a = rem(n), r = m == 1 ? 0 : 1;
        while (p) {
            if (p & 1) r = rem(u64(r) * a);
            a = rem(u64(a) * a);
            p >>= 1;
        }
        return r;
    }
};
#line 3 "library/modint/ArbitaryModint.hpp"
struct ArbitraryModint {
    int x;
    ArbitraryModint():x(0) {}
    ArbitraryModint(int64_t y) {
        int z = y % get_mod();
        if(z < 0) z += get_mod();
        x = z;
    }
    ArbitraryModint &operator+=(const ArbitraryModint &p) {
        if((x += p.x) >= get_mod()) x -= get_mod();
        return *this;
    }
    ArbitraryModint &operator-=(const ArbitraryModint &p) {
        if((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
        return *this;
    }
    ArbitraryModint &operator*=(const ArbitraryModint &p) {
        x = rem((unsigned long long)x * p.x);
        return *this;
    }
    ArbitraryModint &operator/=(const ArbitraryModint &p) {
        *this *= p.inverse();
        return *this;
    }
    ArbitraryModint operator-() const {return ArbitraryModint(-x);};
    ArbitraryModint operator+(const ArbitraryModint &p) const{
        return ArbitraryModint(*this) += p;
    }
    ArbitraryModint operator-(const ArbitraryModint &p) const{
        return ArbitraryModint(*this) -= p;
    }
    ArbitraryModint operator*(const ArbitraryModint &p) const{
        return ArbitraryModint(*this) *= p;
    }
    ArbitraryModint operator/(const ArbitraryModint &p) const {
        return ArbitraryModint(*this) /= p;
    }
    bool operator==(const ArbitraryModint &p) {return x == p.x;}
    bool operator!=(const ArbitraryModint &p) {return x != p.x;}
    ArbitraryModint inverse() const {
        int a = x,b = get_mod(),u = 1,v = 0,t;
        while(b > 0) {
            t = a / b;
            swap(a -= t * b,b);
            swap(u -= t * v,v);
        }
        return ArbitraryModint(u);
    }
    ArbitraryModint pow(int64_t n) const {
        ArbitraryModint ret(1),mul(x);
        while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }
    friend ostream &operator<<(ostream &os,const ArbitraryModint &p) {
        return os << p.x;
    }
    friend istream &operator>>(istream &is,ArbitraryModint &a) {
        int64_t t;
        is >> t;
        a = ArbitraryModint(t);
        return (is);
    }
    int get() const {return x;}
    inline unsigned int rem(unsigned long long p) {return barrett().rem(p);};
    static inline Barrett &barrett() {
        static Barrett b;
        return b;
    }
    static inline int &get_mod() {
        static int mod = 0;
        return mod;
    }
    static void set_mod(int md) {
        assert(0 < md && md <= (1LL << 30) - 1);
        get_mod() = md;
        barrett() = Barrett(md);
    }
};
#line 87 "main.cpp"
using mint = ArbitraryModint;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
#line 2 "library/math/factorize.hpp"
vector<pair<long long,int>> prime_factorization(long long n) {
    vector<pair<long long,int>> ret;
    int c = 0;
    while(n % 2 == 0) {
        c++;
        n >>= 1;
    }
    if(c) ret.emplace_back(2,c);
    for(long long i = 3; i * i <= n; i += 2) {
        c = 0;
        while(n % i == 0) {
            n /= i;
            c++;
        }
        if(c) ret.emplace_back(i,c);
    }
    if (n != 1) ret.emplace_back(n,1);
    return ret;
}
vector<long long> divisor(long long n) {
    vector<long long> ret;
    for(long long i = 1; i * i <= n; i++) {
        if (n % i == 0) {
            ret.push_back(i);
            if(i * i != n) {ret.push_back(n / i);}
        }
    }
    sort(ret.begin(),ret.end());
    return ret;
}
#line 2 "library/segtree/segtree.hpp"
template <typename T, typename F>
struct segtree {
    int N;
    int size;
    vector<T> seg;
    const F f;
    const T I;
    segtree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {}
    segtree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); }
    segtree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) {
        init(v.size());
        for (int i = 0; i < (int)v.size(); i++) {
            seg[i + size] = v[i];
        }
        build();
    }
    void init(int _N) {
        N = _N;
        size = 1;
        while (size < N) size <<= 1;
        seg.assign(2 * size, I);
    }
    void build() {
        for (int k = size - 1; k > 0; k--) {
            seg[k] = f(seg[2 * k], seg[2 * k + 1]);
        }
    }
    void set(int k, T x) {
        assert(0 <= k && k < N);
        k += size;
        seg[k] = x;
        while (k >>= 1) {
            seg[k] = f(seg[2 * k], seg[2 * k + 1]);
        }
    }
    void add(int k, T x) {
        assert(0 <= k && k < N);
        k += size;
        seg[k] += x;
        while (k >>= 1) {
            seg[k] = f(seg[2 * k], seg[2 * k + 1]);
        }
    }
    T get(int k) const {
        assert(0 <= k && k < N);
        return seg[k + size];
    }
    // query to [l, r)
    T prod(int l, int r) {
        assert(0 <= l && l <= r && r <= N);
        T L = I, R = I;
        for (l += size, r += size; l < r; l >>= 1, r >>= 1) {
            if (l & 1) L = f(L, seg[l++]);
            if (r & 1) R = f(seg[--r], R);
        }
        return f(L, R);
    }

    // check(a[l] * ...  * a[r-1]) が true となる最大の r
    // (右端まですべて true なら N を返す)
    template <class C>
    int max_right(int l, C check) {
        assert(0 <= l && l <= N);
        assert(check(I) == true);
        if (l == N) return N;
        l += size;
        T sm = I;
        do {
            while (l % 2 == 0) l >>= 1;
            if (!check(f(sm, seg[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (check(f(sm, seg[l]))) {
                        sm = f(sm, seg[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = f(sm, seg[l]);
            l++;
        } while ((l & -l) != l);
        return N;
    }
    // check(a[l] * ... * a[r-1]) が true となる最小の l
    // (左端まで true なら 0 を返す)
    template <typename C>
    int min_left(int r, C check) {
        assert(0 <= r && r <= N);
        assert(check(I) == true);
        if (r == 0) return 0;
        r += size;
        T sm = I;
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!check(f(seg[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (check(f(seg[r], sm))) {
                        sm = f(seg[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = f(seg[r], sm);
        } while ((r & -r) != r);
        return 0;
    }
};
#line 93 "main.cpp"

int main() {
    INT(n,b,q);
    mint::set_mod(b);
    VEC(ll,a,n);
    auto prs = prime_factorization(b);
    vvl cnt(prs.size(),vl(n));
    vm rem(n);
    vi zero_flg(n);
    rep(i,n) {
        ll now = a[i];
        if(now == 0) {
            zero_flg[i] = 1;
            continue;
        }
        rep(j,prs.size()) {
            int p = prs[j].first;
            while(now % p == 0) {
                cnt[j][i]++;
                now /= p;
            }
        }
        rem[i] = now;
    }
    vm init(n);
    rep(i,n) init[i] = a[i];
    auto op = [](mint x,mint y) {return x * y;};
    segtree<mint,decltype(op)> seg(init,op,1);
    rep(i,q) {
        INT(j);
        LL(m);
        INT(l,r);
        r++;
        int flg = 1;
        if(zero_flg[j] != 0) {
            rep(k,prs.size()) if(cnt[k][j] < prs[k].second) {
                flg = 0;
                break;
            }
            if(flg && m == b) {
                mint tmp = 1;
                rep(k,prs.size()) {
                    cnt[k][j] -= prs[k].second;
                    tmp *= mint(prs[k].first).pow(cnt[k][j]);
                }
                tmp *= rem[j];
                seg.set(j,tmp);
            }
            else {
                ll now = m;
                if(now == 0) zero_flg[j] = 1;
                else {
                    rep(k,prs.size()) {
                        int p = prs[k].first;
                        while(now % p == 0) {
                            cnt[k][j]++;
                            now /= p;
                        }
                    }
                    rem[j] *= now;
                }
                seg.set(j,seg.get(j)*m);
            }
        }
        cout << seg.prod(l,r) << '\n';
    }
}
0