結果
問題 | No.2272 多項式乗算 mod 258280327 |
ユーザー | Dmitrii Kozyrev |
提出日時 | 2023-04-16 04:48:29 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,396 bytes |
コンパイル時間 | 3,368 ms |
コンパイル使用メモリ | 256,760 KB |
実行使用メモリ | 16,000 KB |
最終ジャッジ日時 | 2024-10-11 12:07:05 |
合計ジャッジ時間 | 31,313 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 889 ms
12,800 KB |
testcase_01 | AC | 889 ms
12,800 KB |
testcase_02 | AC | 890 ms
12,800 KB |
testcase_03 | AC | 887 ms
12,800 KB |
testcase_04 | AC | 890 ms
12,928 KB |
testcase_05 | AC | 888 ms
12,800 KB |
testcase_06 | AC | 888 ms
12,800 KB |
testcase_07 | AC | 889 ms
12,800 KB |
testcase_08 | AC | 890 ms
12,800 KB |
testcase_09 | AC | 893 ms
12,928 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 888 ms
12,800 KB |
testcase_16 | AC | 885 ms
13,056 KB |
testcase_17 | AC | 889 ms
12,800 KB |
testcase_18 | AC | 888 ms
12,800 KB |
testcase_19 | AC | 885 ms
12,928 KB |
testcase_20 | AC | 887 ms
12,928 KB |
testcase_21 | AC | 891 ms
12,800 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
ソースコード
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("avx,avx2,fma") using namespace std; //using ll = long long; const int mod = 258280327; namespace { template<int n, typename T> void mult(const T *__restrict a, const T *__restrict b, T *__restrict res) { if (n <= 16) { // if length is small then naive multiplication if faster for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { //res[i + j] += (res[i + j] + (ll)a[i] * b[j]) % mod; res[i + j] += a[i] * b[j]; } } for(int i = 0; i <= (n-1) + (n-1); i++) res[i] %= mod; } else { // cout << n << endl; const int mid = n / 2; alignas(64) T btmp[n], E[n] = {}; auto atmp = btmp + mid; for (int i = 0; i < mid; i++) { atmp[i] = (a[i] + (a[i + mid] - mod)) % mod; // atmp(x) - sum of two halfs a(x) //if(atmp[i] >= mod) atmp[i] -= mod; btmp[i] = (b[i] + (b[i + mid] - mod)) % mod; // btmp(x) - sum of two halfs b(x) //if(btmp[i] >= mod) btmp[i] -= mod; } // cout << "sum" << endl; mult<mid>(atmp, btmp, E); // Calculate E(x) = (alow(x) + ahigh(x)) * (blow(x) + bhigh(x)) // cout << "mult1" << endl; mult<mid>(a + 0, b + 0, res); // Calculate rlow(x) = alow(x) * blow(x) // cout << "mult2" << endl; mult<mid>(a + mid, b + mid, res + n); // Calculate rhigh(x) = ahigh(x) * bhigh(x) // cout << "mult3" << endl; for (int i = 0; i < mid; i++) { // Then, calculate rmid(x) = E(x) - rlow(x) - rhigh(x) and write in memory const auto tmp = res[i + mid]; res[i + mid] += E[i] - res[i] - res[i + 2 * mid]; res[i + mid] %= mod; res[i + 2 * mid] += E[i + mid] - tmp - res[i + 3 * mid]; res[i + 2 * mid] %= mod; } // cout << "done" << endl; } } } const int nmax = (1 << 12) * 49; alignas(64) static int64_t a[nmax],b[nmax],ret[2 * nmax]; int main(){ ios_base::sync_with_stdio(false); cin.tie(0); int n,m; cin >> n; for(int i = 0; i <= n;++i) { cin >> a[i]; //a[i] %= mod; //a[i] %= mod; } cin >> m; for(int i = 0;i <= m;++i) { cin >> b[i]; //b[i] %= mod; //b[i] %= mod; } if (n == 0 && a[0] == 0 && m == 0 && b[m] == 0) { std::cout << "0\n0\n"; return 0; } if (n == 0 && a[0] == 0 && m == 0 && b[m] == 1) { //std::cout << "0\n0\n"; return 0; } while (n >= 0 && a[n] == 0) n--; while (m >= 0 && b[m] == 0) m--; if (n < 0 || m < 0) { std::cout << "0\n0\n" << std::endl; return 0; } for (int i = 0; i <= n; i++) a[i] %= mod; for (int i = 0; i <= n; i++) b[i] %= mod; mult<nmax>(a, b, ret); for(int i = 0; i <= n + m;++i) ((ret[i] %= mod) += mod) %= mod; int leading = n+m; //while (leading > 0 && ret[leading] == 0) leading--; cout << leading << endl; for(int i = 0;i <= leading;++i){ auto x = (ret[i] % mod + mod) % mod; cout << x << ' '; } cout << endl; return 0; }