結果
問題 | No.1396 Giri |
ユーザー | atcoder8 |
提出日時 | 2023-04-16 15:20:54 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 145 ms / 2,000 ms |
コード長 | 22,168 bytes |
コンパイル時間 | 12,342 ms |
コンパイル使用メモリ | 380,748 KB |
実行使用メモリ | 17,628 KB |
最終ジャッジ日時 | 2024-10-12 00:01:52 |
合計ジャッジ時間 | 14,741 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 134 ms
17,436 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 0 ms
6,816 KB |
testcase_05 | AC | 139 ms
17,472 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,816 KB |
testcase_08 | AC | 1 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,820 KB |
testcase_11 | AC | 1 ms
6,820 KB |
testcase_12 | AC | 1 ms
6,816 KB |
testcase_13 | AC | 1 ms
6,816 KB |
testcase_14 | AC | 1 ms
6,816 KB |
testcase_15 | AC | 1 ms
6,820 KB |
testcase_16 | AC | 1 ms
6,820 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 9 ms
6,820 KB |
testcase_19 | AC | 66 ms
10,028 KB |
testcase_20 | AC | 96 ms
13,100 KB |
testcase_21 | AC | 118 ms
15,920 KB |
testcase_22 | AC | 141 ms
17,328 KB |
testcase_23 | AC | 139 ms
17,456 KB |
testcase_24 | AC | 145 ms
17,524 KB |
testcase_25 | AC | 140 ms
17,628 KB |
ソースコード
use atcoder8_library::{ modint::{Modint998244353, Pow}, EratosthenesSieve, }; type Mint = Modint998244353; fn main() { let n = { let mut line = String::new(); std::io::stdin().read_line(&mut line).unwrap(); line.trim().parse::<usize>().unwrap() }; let sieve = EratosthenesSieve::new(n); let mut lcm_factors = vec![0; n + 1]; for i in 1..=n { let factors = sieve.prime_factorization(i); for &(p, e) in &factors { lcm_factors[p] = lcm_factors[p].max(e); } } let mut ans = (1..=n).fold(Mint::new(1), |acc, x| { acc * Mint::new(x).pow(lcm_factors[x]) }); ans /= (1..=n).rev().find(|&p| sieve.is_prime(p)).unwrap_or(1); println!("{}", ans.val()); } pub mod atcoder8_library { //! Implements the Sieve of Eratosthenes. //! //! Finds the smallest prime factor of each number placed on the sieve, //! so it can perform Prime Factorization as well as Primality Test. #[derive(Debug, Clone)] pub struct EratosthenesSieve { sieve: Vec<usize>, } impl EratosthenesSieve { /// Constructs a Sieve of Eratosthenes. /// /// # Arguments /// /// * `upper_limit` - The largest number placed on the sieve. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]); /// ``` pub fn new(upper_limit: usize) -> Self { let mut sieve: Vec<usize> = (0..=upper_limit).collect(); for p in (2..).take_while(|&i| i * i <= upper_limit) { if sieve[p] != p { continue; } for i in ((p * p)..=upper_limit).step_by(p) { if sieve[i] == i { sieve[i] = p; } } } Self { sieve } } /// Returns the least prime factor of `n`. /// /// However, if `n` is `1`, then `1` is returned. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.get_least_prime_factor(1), 1); /// assert_eq!(sieve.get_least_prime_factor(2), 2); /// assert_eq!(sieve.get_least_prime_factor(6), 2); /// assert_eq!(sieve.get_least_prime_factor(11), 11); /// assert_eq!(sieve.get_least_prime_factor(27), 3); /// ``` pub fn get_least_prime_factor(&self, n: usize) -> usize { assert_ne!(n, 0, "`n` must be at least 1."); self.sieve[n] } /// Determines if `n` is prime. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert!(!sieve.is_prime(1)); /// assert!(sieve.is_prime(2)); /// assert!(!sieve.is_prime(6)); /// assert!(sieve.is_prime(11)); /// assert!(!sieve.is_prime(27)); /// ``` pub fn is_prime(&self, n: usize) -> bool { n >= 2 && self.sieve[n] == n } /// Performs prime factorization of `n`. /// /// The result of the prime factorization is returned as a /// list of prime factor and exponent pairs. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.prime_factorization(1), vec![]); /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]); /// assert_eq!(sieve.prime_factorization(19), vec![(19, 1)]); /// assert_eq!(sieve.prime_factorization(27), vec![(3, 3)]); /// ``` pub fn prime_factorization(&self, n: usize) -> Vec<(usize, usize)> { assert_ne!(n, 0, "`n` must be at least 1."); let mut n = n; let mut factors: Vec<(usize, usize)> = vec![]; while n != 1 { let p = self.sieve[n]; if factors.is_empty() || factors.last().unwrap().0 != p { factors.push((p, 1)); } else { factors.last_mut().unwrap().1 += 1; } n /= p; } factors } /// Creates a list of positive divisors of `n`. /// /// The positive divisors are listed in ascending order. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.create_divisor_list(1), vec![1]); /// assert_eq!(sieve.create_divisor_list(12), vec![1, 2, 3, 4, 6, 12]); /// assert_eq!(sieve.create_divisor_list(19), vec![1, 19]); /// assert_eq!(sieve.create_divisor_list(27), vec![1, 3, 9, 27]); /// ``` pub fn create_divisor_list(&self, n: usize) -> Vec<usize> { assert_ne!(n, 0, "`n` must be at least 1."); let prime_factors = self.prime_factorization(n); let divisor_num: usize = prime_factors.iter().map(|&(_, exp)| exp + 1).product(); let mut divisors = vec![1]; divisors.reserve(divisor_num - 1); for (p, e) in prime_factors { let mut add_divisors = vec![]; add_divisors.reserve(divisors.len() * e); let mut mul = 1; for _ in 1..=e { mul *= p; for &d in divisors.iter() { add_divisors.push(d * mul); } } divisors.append(&mut add_divisors); } divisors.sort_unstable(); divisors } /// Calculates the number of positive divisors of `n`. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.calc_divisor_num(1), 1); /// assert_eq!(sieve.calc_divisor_num(12), 6); /// assert_eq!(sieve.calc_divisor_num(19), 2); /// assert_eq!(sieve.calc_divisor_num(27), 4); /// ``` pub fn calc_divisor_num(&self, n: usize) -> usize { assert_ne!(n, 0, "`n` must be at least 1."); let mut n = n; let mut divisor_num = 1; let mut cur_p = None; let mut cur_exp = 0; while n != 1 { let p = self.sieve[n]; if Some(p) == cur_p { cur_exp += 1; } else { divisor_num *= cur_exp + 1; cur_p = Some(p); cur_exp = 1; } n /= p; } divisor_num *= cur_exp + 1; divisor_num } } pub mod modint { use std::ops::{ Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, ShrAssign, Sub, SubAssign, }; pub trait RemEuclidU32 { fn rem_euclid_u32(self, modulus: u32) -> u32; } /// Calculate the modular multiplicative inverse of `a` with `m` as modulus. pub fn modinv(a: u32, m: u32) -> u32 { assert!(m >= 2); let (mut a, mut b, mut s, mut t) = (a as i64, m as i64, 1, 0); while b != 0 { let q = a / b; a -= q * b; std::mem::swap(&mut a, &mut b); s -= q * t; std::mem::swap(&mut s, &mut t); } assert_eq!( a.abs(), 1, "The inverse does not exist. gcd(a, m) = {}", a.abs() ); s %= m as i64; if s < 0 { s += m as i64; } s as u32 } /// This macro implements rem_euclid_u32 for signed integer types of 32 bits or less. macro_rules! impl_rem_euclid_u32_for_small_signed { ($($small_signed_type:tt),*) => { $( impl RemEuclidU32 for $small_signed_type { fn rem_euclid_u32(self, modulus: u32) -> u32 { let ret = (self as i32) % (modulus as i32); if ret >= 0 { ret as u32 } else { (ret + modulus as i32) as u32 } } } )* }; } /// This macro implements rem_euclid_u32 for 64-bit signed integer types (including isize). macro_rules! impl_rem_euclid_u32_for_large_signed { ($($large_signed_type:tt),*) => { $( impl RemEuclidU32 for $large_signed_type { fn rem_euclid_u32(self, modulus: u32) -> u32 { let ret = (self as i64) % (modulus as i64); if ret >= 0 { ret as u32 } else { (ret + modulus as i64) as u32 } } } )* }; } /// This macro implements rem_euclid_u32 for unsigned integer types greater than 32 bits. macro_rules! impl_rem_euclid_u32_for_small_unsigned { ($($small_unsigned_type:tt),*) => { $( impl RemEuclidU32 for $small_unsigned_type { fn rem_euclid_u32(self, modulus: u32) -> u32 { self as u32 % modulus } } )* }; } /// This macro implements rem_euclid_u32 for 64-bit and larger unsigned integer types (including usize). macro_rules! impl_rem_euclid_u32_for_large_unsigned { ($($large_unsigned_type:tt),*) => { $( impl RemEuclidU32 for $large_unsigned_type { fn rem_euclid_u32(self, modulus: u32) -> u32 { (self % modulus as $large_unsigned_type) as u32 } } )* }; } // Implement rem_euclid_u32 for signed integer types of 32 bits or less. impl_rem_euclid_u32_for_small_signed!(i8, i16, i32); // Implement rem_euclid_u32 for 64-bit signed integer types (including isize). impl_rem_euclid_u32_for_large_signed!(i64, isize); // Implement rem_euclid_u32 for unsigned integer types of 32 bits or more. impl_rem_euclid_u32_for_small_unsigned!(u8, u16, u32); // Implement rem_euclid_u32 for unsigned integer types (including usize) of 64 bits or more. impl_rem_euclid_u32_for_large_unsigned!(u64, u128, usize); // Implement rem_euclid_u32 for i128. impl RemEuclidU32 for i128 { fn rem_euclid_u32(self, modulus: u32) -> u32 { let ret = self % (modulus as i128); if ret >= 0 { ret as u32 } else { (ret + modulus as i128) as u32 } } } pub trait Pow<T: Copy + ShrAssign> { fn pow(self, n: T) -> Self; } /// Macro to overload binary operation with `$modint_type` for each integer type macro_rules! impl_ops { ($modint_type:tt, $($other_type:tt),*) => { $( impl Add<$other_type> for $modint_type { type Output = Self; fn add(self, rhs: $other_type) -> Self::Output { self + Self::new(rhs) } } impl Add<$modint_type> for $other_type { type Output = $modint_type; fn add(self, rhs: $modint_type) -> Self::Output { $modint_type::new(self) + rhs } } impl Sub<$other_type> for $modint_type { type Output = Self; fn sub(self, rhs: $other_type) -> Self::Output { self - Self::new(rhs) } } impl Sub<$modint_type> for $other_type { type Output = $modint_type; fn sub(self, rhs: $modint_type) -> Self::Output { $modint_type::new(self) - rhs } } impl Mul<$other_type> for $modint_type { type Output = Self; fn mul(self, rhs: $other_type) -> Self::Output { self * Self::new(rhs) } } impl Mul<$modint_type> for $other_type { type Output = $modint_type; fn mul(self, rhs: $modint_type) -> Self::Output { $modint_type::new(self) * rhs } } impl Div<$other_type> for $modint_type { type Output = Self; fn div(self, rhs: $other_type) -> Self::Output { self / Self::new(rhs) } } impl Div<$modint_type> for $other_type { type Output = $modint_type; fn div(self, rhs: $modint_type) -> Self::Output { $modint_type::new(self) / rhs } } impl AddAssign<$other_type> for $modint_type { fn add_assign(&mut self, other: $other_type) { *self = *self + Self::new(other); } } impl SubAssign<$other_type> for $modint_type { fn sub_assign(&mut self, other: $other_type) { *self = *self - Self::new(other); } } impl MulAssign<$other_type> for $modint_type { fn mul_assign(&mut self, other: $other_type) { *self = *self * Self::new(other); } } impl DivAssign<$other_type> for $modint_type { fn div_assign(&mut self, other: $other_type) { *self = *self / Self::new(other); } } )* }; } /// This macro defines powers of Modint for unsigned integer types. macro_rules! impl_power_for_unsigned { ($modint_type:tt, $($unsigned_type:tt),*) => { $( impl Pow<$unsigned_type> for $modint_type { fn pow(self, mut n: $unsigned_type) -> Self { let mut ret = Self::new(1); let mut mul = self; while n != 0 { if n & 1 == 1 { ret *= mul; } mul *= mul; n >>= 1; } ret } } )* }; } /// This macro defines powers of Modint for signed integer types of 32 bits or less. macro_rules! impl_power_for_small_signed { ($modint_type:tt, $($small_signed_type:tt),*) => { $( impl Pow<$small_signed_type> for $modint_type { fn pow(self, n: $small_signed_type) -> Self { if n >= 0 { self.pow(n as u32) } else { self.pow(-n as u32).inv() } } } )* }; } /// This macro defines the power of Modint for 64-bit signed integer types (including isize). macro_rules! impl_power_for_large_signed { ($modint_type:tt, $($large_signed_type:tt),*) => { $( impl Pow<$large_signed_type> for $modint_type { fn pow(self, n: $large_signed_type) -> Self { if n >= 0 { self.pow(n as u64) } else { self.pow(-n as u64).inv() } } } )* }; } /// This macro generates Modint by specifying the type name and modulus. macro_rules! generate_modint { ($modint_type:tt, $modulus:literal) => { #[derive(Debug, Default, Hash, Clone, Copy, PartialEq, Eq)] pub struct $modint_type { val: u32, } impl $modint_type { const MOD: u32 = $modulus; } impl $modint_type { pub fn new<T: RemEuclidU32>(val: T) -> Self { Self { val: val.rem_euclid_u32($modulus), } } pub fn frac<T: RemEuclidU32>(numer: T, denom: T) -> Self { Self::new(numer) / Self::new(denom) } pub fn raw(val: u32) -> Self { Self { val } } pub fn val(&self) -> u32 { self.val } pub fn inv(&self) -> Self { Self::new(modinv(self.val, $modulus)) } } impl<T: RemEuclidU32> From<T> for $modint_type { fn from(val: T) -> Self { Self::new(val) } } impl Add for $modint_type { type Output = Self; fn add(self, rhs: Self) -> Self::Output { Self::new(self.val + rhs.val) } } impl Sub for $modint_type { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { Self::new(self.val + $modulus - rhs.val) } } impl Mul for $modint_type { type Output = Self; fn mul(self, rhs: Self) -> Self::Output { Self::new(self.val as u64 * rhs.val as u64) } } impl Div for $modint_type { type Output = Self; #[allow(clippy::suspicious_arithmetic_impl)] fn div(self, rhs: Self) -> Self::Output { self * rhs.inv() } } impl AddAssign for $modint_type { fn add_assign(&mut self, other: Self) { *self = *self + other; } } impl SubAssign for $modint_type { fn sub_assign(&mut self, other: Self) { *self = *self - other; } } impl MulAssign for $modint_type { fn mul_assign(&mut self, other: Self) { *self = *self * other; } } impl DivAssign for $modint_type { fn div_assign(&mut self, other: Self) { *self = *self / other; } } impl Neg for $modint_type { type Output = Self; fn neg(self) -> Self::Output { Self::new(Self::MOD - self.val) } } // Define a binary operation between each integer type and $modint_type. impl_ops!( $modint_type, i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize ); // Define powers of Modint for unsigned integer types. impl_power_for_unsigned!($modint_type, u8, u16, u32, u64, u128, usize); // Define powers of Modint for signed integer types of 32 bits or less. impl_power_for_small_signed!($modint_type, i8, i16, i32); // Define Modint powers for 64-bit signed integer types (including isize). impl_power_for_large_signed!($modint_type, i64, isize); // Define the power of Modint for 128-bit signed integer types. impl Pow<i128> for $modint_type { fn pow(self, n: i128) -> Self { if n >= 0 { self.pow(n as u128) } else { self.pow(-n as u128).inv() } } } }; } // Define Modint with 998244353 as modulus generate_modint!(Modint998244353, 998244353); // Define Modint with 1000000007 as modulus generate_modint!(Modint1000000007, 1000000007); } }