結果
問題 | No.3105 Міжнародний підрядок саміт |
ユーザー | 👑 p-adic |
提出日時 | 2023-04-16 19:59:25 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,536 ms / 3,153 ms |
コード長 | 7,714 bytes |
コンパイル時間 | 4,007 ms |
コンパイル使用メモリ | 239,328 KB |
実行使用メモリ | 167,488 KB |
最終ジャッジ日時 | 2024-11-15 04:10:43 |
合計ジャッジ時間 | 8,046 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 126 ms
167,392 KB |
testcase_01 | AC | 1,536 ms
167,432 KB |
testcase_02 | AC | 158 ms
167,356 KB |
testcase_03 | AC | 1,493 ms
167,452 KB |
testcase_04 | AC | 122 ms
167,488 KB |
ソースコード
#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include <bits/stdc++.h> using namespace std; using ll = long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ inline CEXPR( int , bound_N , 13 ); inline CEXPR( int , lim_B , 1 << bound_N ); // O(2^N) struct Card { int m_val[lim_B]; constexpr Card() : m_val() { int two_power = 1; FOR( d , 0 , bound_N ){ FOR( B , 0 , two_power ){ m_val[B | two_power] = m_val[B] + 1; } two_power <<= 1; } } }; inline CEXPR( int , lim_x_shift , bound_N * ( bound_N - 1 ) + 1 ); inline CEXPR( int , bound_x , lim_x_shift >> 1 ); inline CEXPR( int , bound_three_power , 1594323 ); // 3^13 // O(3^N) struct X { vector<vector<bool> > m_val[lim_B]; inline X( const int ( &card )[lim_B] ) : m_val() { FOR( B , 0 , lim_B ){ vector<vector<bool> >& m_val_B = m_val[B]; const int& B_card = card[B]; m_val_B.reserve( B_card + 1 ); FOREQ( p , 0 , B_card ){ m_val_B[p].reserve( lim_x_shift ); } } int x[bound_three_power] = { bound_x }; int B[bound_three_power] = {}; int p[bound_three_power] = {}; int three_power = 1; int three_power2 = 2; int two_power = 1; FOR( d , 0 , bound_N ){ FOR( i , 0 , three_power ){ int& xi = x[i]; int i_plus = i + three_power; int i_plus2 = i + three_power2; x[i_plus] = xi - d; x[i_plus2] = xi + d; B[i_plus] = B[i_plus2] = B[i] | two_power; p[i_plus2] = ( p[i_plus] = p[i] ) + 1; } three_power = three_power2 + three_power; three_power2 = three_power << 1; two_power <<= 1; } FOR( i , 1 , bound_three_power ){ m_val[B[i]][p[i]][x[i]] = true; } } }; // O(N^3 2^N) struct Xlr { int m_val[2][lim_B][bound_N+1][lim_x_shift]; inline Xlr( const int ( &card )[lim_B] , const vector<vector<bool> > ( &x )[lim_B] ) : m_val() { int ( &xl )[lim_B][bound_N+1][lim_x_shift] = m_val[0]; int ( &xr )[lim_B][bound_N+1][lim_x_shift] = m_val[1]; FOR( B , 1 , lim_B ){ const vector<vector<bool> > &xB = x[B]; const int& B_card = card[B]; int ( &xlB )[bound_N+1][lim_x_shift] = xl[B]; int ( &xrB )[bound_N+1][lim_x_shift] = xr[B]; FOREQ( p , 0 , B_card ){ const vector<bool>& xBp = xB[p]; int ( &xlBp )[lim_x_shift] = xlB[p]; int y_prev = lim_x_shift - 1; FOREQINV( y , lim_x_shift - 1 , 0 ){ if( xBp[y] ){ FOREQINV( z , y_prev , y ){ xlBp[z] = y - bound_x; } y_prev = y - 1; } } FOREQINV( z , y_prev , 0 ){ xlBp[z] = bound_x + 1; } int ( &xrBp )[lim_x_shift] = xrB[p]; y_prev = 0; FOR( y , 0 , lim_x_shift ){ if( xBp[y] ){ FOR( z , y_prev , y ){ xrBp[z] = y - bound_x; } y_prev = y + 1; } } FOR( z , y_prev , lim_x_shift ){ xrBp[z] = bound_x + 1; } } } } }; int main() { UNTIE; CEXPR( int , bound_T , 6000 ); CIN_ASSERT( T , 1 , bound_T ); CEXPR( int , bound_Pl , 100000000 ); CEXPR( int , bound_Pr , 1000000000 ); CEXPR( ll , bound_Ai , 1000000000 ); CEXPR( ll , bound_evenness , ll( 1 ) << 62 ); constexpr Card card{}; static Xlr xlr( card.m_val , X( card.m_val ).m_val ); int ( &xl )[lim_B][bound_N+1][lim_x_shift] = xlr.m_val[0]; int ( &xr )[lim_B][bound_N+1][lim_x_shift] = xlr.m_val[1]; ll answer; pair<ll,ll> key; ll& d = key.second; map<pair<ll,ll>,ll> memory{}; CEXPR( int , bound_N_full , 300 ); CEXPR( ll , two , 2 ); REPEAT( T ){ CIN_ASSERT( N , 1 , bound_N_full ); CIN_ASSERT( P , bound_Pl , bound_Pr ); CIN_ASSERT( A0 , 1 , bound_Ai ); CIN_ASSERT( A1 , 1 , bound_Ai ); d = A1 - A0; FOR( i , 2 , N ){ cin >> A1; } if( d == 0 ){ if( N == 2 ){ answer = 2; } else { POWER_MOD( power , two , N - 1 , P ); answer = power; } answer *= A0; } else { answer = 0; if( d < 0 ){ d *= -1; A0 -= d * ( N - 1 ); } key.first = A0; if( memory.count( key ) == 1 ){ answer = memory[key]; } else { int power_N = 1 << N; FOR( B , 1 , power_N ){ int ( &xlB )[bound_N+1][lim_x_shift] = xl[B]; int ( &xrB )[bound_N+1][lim_x_shift] = xr[B]; const int& B_card = card.m_val[B]; ll evenness = bound_evenness; ll A0_factor = B_card * A0; ll A02 = A0 << 1; int p = 0; int B_card_non_negative = A0_factor / A02 + 1; B_card_non_negative > B_card ? B_card_non_negative = B_card : B_card_non_negative; while( p < B_card_non_negative ){ ll y = A0_factor / d + bound_x; y >= lim_x_shift ? y = lim_x_shift - 1 : y < 0 ? y = 0 : y; int ( &xlBp )[lim_x_shift] = xlB[p]; int& yl = xlBp[y]; if( yl <= bound_x ){ ll evenness_curr = -A0_factor + yl * d ; evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr; evenness > evenness_curr ? evenness = evenness_curr : evenness; } int ( &xrBp )[lim_x_shift] = xrB[p]; int& yr = xrBp[y]; if( yr <= bound_x ){ ll evenness_curr = -A0_factor + yr * d ; evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr; evenness > evenness_curr ? evenness = evenness_curr : evenness; } A0_factor -= A02; p++; } while( p < B_card ){ ll y = A0_factor / d - ( A0_factor % d != 0 ? 1 : 0 ) + bound_x; y >= lim_x_shift ? y = lim_x_shift - 1 : y < 0 ? y = 0 : y; int ( &xlBp )[lim_x_shift] = xlB[p]; int& yl = xlBp[y]; if( yl <= bound_x ){ ll evenness_curr = -A0_factor + yl * d ; evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr; evenness > evenness_curr ? evenness = evenness_curr : evenness; } int ( &xrBp )[lim_x_shift] = xrB[p]; int& yr = xrBp[y]; if( yr <= bound_x ){ ll evenness_curr = -A0_factor + yr * d ; evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr; evenness > evenness_curr ? evenness = evenness_curr : evenness; } A0_factor -= A02; p++; } answer += evenness; } memory[key] = answer; } } COUT( answer % P ); } QUIT; }