結果

問題 No.1976 Cut then Connect
ユーザー noya2
提出日時 2023-04-17 22:48:50
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 135 ms / 2,000 ms
コード長 3,268 bytes
コンパイル時間 2,201 ms
コンパイル使用メモリ 211,536 KB
最終ジャッジ日時 2025-02-12 09:44:58
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;

template<class E, class V, E (*merge)(E, E), E (*e)(), E (*put_edge)(V, int), V (*put_vertex)(E, int)>
struct Rerooting {
    struct edge{
        int to, idx, xdi;
    };
    Rerooting (int _n = 0) : n(_n) { es.resize(n);}
    void add_edge(int u, int v, int idx1, int idx2){
        es[u].push_back({v,idx1,idx2});
        es[v].push_back({u,idx2,idx1});
    }
    vector<V> build(int v = 0){
        root = v;
        outs.resize(n);
        subdp.resize(n);
        in.resize(n), up.resize(n);
        int tnow = 0;
        dfs(root,-1,tnow);
        return subdp;
    }
    vector<V> reroot(){
        reverse_edge.resize(n);
        reverse_edge[root] = e();
        reverse_dp.resize(n);
        answers.resize(n);
        bfs(root);
        return answers;
    }
    V get(int r, int v){
        if (r == v) return answers[r];
        if (!(in[v] < in[r] && up[r] <= up[v])) return subdp[v];
        int le = 0, ri = outs[v].size();
        while (ri - le > 1){
            int md = (le + ri) / 2;
            if (in[es[v][md].to] <= in[r]) le = md;
            else ri = md;
        }
        return reverse_dp[es[v][le].to];
    }
    const vector<edge>& operator[](int idx) const { return es[idx];}
  private:
    int n, root;
    vector<vector<edge>> es;
    vector<vector<E>> outs;
    vector<E> reverse_edge;
    vector<V> subdp, reverse_dp, answers;
    vector<int> in, up;
    void dfs(int v, int p, int &t){
        E val = e();
        in[v] = t++;
        for (auto &u : es[v]){
            if (u.to == p && u.to != es[v].back().to) swap(u,es[v].back());
            if (u.to == p) continue;
            dfs(u.to,v,t);
            E nval = put_edge(subdp[u.to],u.idx);
            outs[v].emplace_back(nval);
            val = merge(val,nval);
        }
        subdp[v] = put_vertex(val,v);
        up[v] = t;
    }
    void bfs(int v){
        int siz = outs[v].size();
        vector<E> lui(siz+1), rui(siz+1);
        lui[0] = e(), rui[siz] = e();
        for (int i = 0; i < siz; i++) lui[i+1] = merge(lui[i],outs[v][i]);
        for (int i = siz-1; i >= 0; i--) rui[i] = merge(outs[v][i],rui[i+1]);
        for (int i = 0; i < siz; i++){
            reverse_dp[es[v][i].to] = put_vertex(merge(merge(lui[i],rui[i+1]),reverse_edge[v]),v);
            reverse_edge[es[v][i].to] = put_edge(reverse_dp[es[v][i].to],es[v][i].xdi);
            bfs(es[v][i].to);
        }
        answers[v] = put_vertex(merge(lui[siz],reverse_edge[v]), v);
    }
};

using P = pair<int,int>;
P merge(P a, P b){
    return P(max(max(a.first,b.first),a.second+b.second),max(a.second,b.second));
}
P e(){
    return P(0,0);
}
P pute(P v, int id){
    return P(max(v.first,v.second+1),v.second+1);
}
P putv(P e, int id){
    return e;
}

int main(){
    int n; cin >> n;
    Rerooting<P,P,merge,e,pute,putv> g(n);
    for (int i = 0; i < n-1; i++){
        int u, v; cin >> u >> v; u--, v--;
        g.add_edge(u,v,i,i);
    }
    g.build();
    g.reroot();
    int ans = n;
    for (int u = 0; u < n; u++){
        for (auto [v, idx, dxi] : g[u]){
            int x = g.get(u,v).first;
            int y = g.get(v,u).first;
            ans = min(ans,max({x,y,(x+1)/2+(y+1)/2+1}));
        }
    }
    cout << ans << endl;
}
0