結果
| 問題 |
No.2277 Honest or Dishonest ?
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-04-21 21:41:53 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 90 ms / 2,000 ms |
| コード長 | 9,554 bytes |
| コンパイル時間 | 1,908 ms |
| コンパイル使用メモリ | 205,372 KB |
| 最終ジャッジ日時 | 2025-02-12 11:17:02 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 50 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
int popcount(int x) { return __builtin_popcount(x); }
int popcount(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
int n = a.size();
vector<T> b(n);
for (int i = 0; i < n; i++) b[i] = a[ord[i]];
swap(a, b);
}
template <typename T>
T floor(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? x / y : (x - y + 1) / y);
}
template <typename T>
T ceil(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? (x + y - 1) / y : x / y);
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;
template <bool directed = false>
struct Graph {
struct edge {
int to, id;
edge(int to, int id) : to(to), id(id) {}
};
vector<vector<edge>> es;
const int n;
int m;
Graph(int n) : es(n), n(n), m(0) {}
void add_edge(int from, int to) {
es[from].emplace_back(to, m);
if (!directed) es[to].emplace_back(from, m);
m++;
}
};
template <bool directed = true>
struct Strongly_Connected_Components {
struct edge {
int to, id;
edge(int to, int id) : to(to), id(id) {}
};
vector<vector<edge>> es;
vector<int> st;
vector<int> ord, low, comp;
const int n;
int m;
Strongly_Connected_Components(int n) : es(n), ord(n), low(n), comp(n), n(n), m(0) { st.reserve(n); }
void add_edge(int from, int to) {
es[from].emplace_back(to, m);
if (!directed) es[to].emplace_back(from, m);
m++;
}
void _dfs(int now, int &cnt_ord, int &cnt_group) {
ord[now] = low[now] = cnt_ord++;
st.push_back(now);
for (auto &e : es[now]) {
if (ord[e.to] == -1) {
_dfs(e.to, cnt_ord, cnt_group);
low[now] = min(low[now], low[e.to]);
} else {
low[now] = min(low[now], ord[e.to]);
}
}
if (low[now] == ord[now]) {
while (true) {
int v = st.back();
st.pop_back();
ord[v] = n;
comp[v] = cnt_group;
if (v == now) break;
}
cnt_group++;
}
}
int decompose() {
fill(begin(ord), end(ord), -1);
int cnt_ord = 0, cnt_group = 0;
for (int i = 0; i < n; i++) {
if (ord[i] == -1) _dfs(i, cnt_ord, cnt_group);
}
for (int i = 0; i < n; i++) comp[i] = cnt_group - 1 - comp[i];
return cnt_group;
}
Graph<true> make_graph() {
Graph<true> G(decompose());
for (int i = 0; i < n; i++) {
for (auto &e : es[i]) {
int u = comp[i], v = comp[e.to];
if (u != v) G.add_edge(u, v);
}
}
return G;
}
int operator[](int k) const { return comp[k]; }
};
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
struct Union_Find_Tree {
vector<int> data;
const int n;
int cnt;
Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
int root(int x) {
if (data[x] < 0) return x;
return data[x] = root(data[x]);
}
int operator[](int i) { return root(i); }
bool unite(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
if (data[x] > data[y]) swap(x, y);
data[x] += data[y], data[y] = x;
cnt--;
return true;
}
int size(int x) { return -data[root(x)]; }
int count() { return cnt; };
bool same(int x, int y) { return root(x) == root(y); }
void clear() {
cnt = n;
fill(begin(data), end(data), -1);
}
};
void solve() {
int N, Q;
cin >> N >> Q;
Strongly_Connected_Components G(2 * N);
Union_Find_Tree uf(N);
while (Q--) {
int a, b, c;
cin >> a >> b >> c;
a--, b--;
if (c == 0) {
G.add_edge(a, b), G.add_edge(b, a);
G.add_edge(a + N, b + N), G.add_edge(b + N, a + N);
} else {
G.add_edge(a, b + N), G.add_edge(b + N, a);
G.add_edge(a + N, b), G.add_edge(b, a + N);
}
uf.unite(a, b);
}
G.decompose();
rep(i, N) {
if (G.comp[i] == G.comp[N + i]) {
cout << "0\n";
return;
}
}
cout << mint(2).pow(uf.count()) << '\n';
}
int main() {
int T = 1;
// cin >> T;
while (T--) solve();
}