結果

問題 No.2277 Honest or Dishonest ?
ユーザー tokusakuraitokusakurai
提出日時 2023-04-21 21:41:53
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 126 ms / 2,000 ms
コード長 9,554 bytes
コンパイル時間 2,446 ms
コンパイル使用メモリ 212,168 KB
実行使用メモリ 22,912 KB
最終ジャッジ日時 2024-11-08 06:25:37
合計ジャッジ時間 7,087 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 95 ms
16,000 KB
testcase_04 AC 88 ms
17,792 KB
testcase_05 AC 28 ms
11,520 KB
testcase_06 AC 58 ms
12,672 KB
testcase_07 AC 51 ms
12,160 KB
testcase_08 AC 23 ms
11,776 KB
testcase_09 AC 51 ms
13,056 KB
testcase_10 AC 36 ms
9,216 KB
testcase_11 AC 17 ms
6,528 KB
testcase_12 AC 22 ms
6,528 KB
testcase_13 AC 71 ms
14,336 KB
testcase_14 AC 24 ms
7,040 KB
testcase_15 AC 23 ms
9,984 KB
testcase_16 AC 49 ms
11,904 KB
testcase_17 AC 24 ms
7,424 KB
testcase_18 AC 75 ms
17,024 KB
testcase_19 AC 79 ms
17,152 KB
testcase_20 AC 64 ms
14,208 KB
testcase_21 AC 42 ms
9,856 KB
testcase_22 AC 48 ms
12,544 KB
testcase_23 AC 55 ms
12,800 KB
testcase_24 AC 43 ms
11,776 KB
testcase_25 AC 56 ms
14,592 KB
testcase_26 AC 15 ms
10,368 KB
testcase_27 AC 29 ms
8,832 KB
testcase_28 AC 23 ms
9,856 KB
testcase_29 AC 36 ms
12,160 KB
testcase_30 AC 30 ms
9,984 KB
testcase_31 AC 54 ms
14,720 KB
testcase_32 AC 33 ms
11,520 KB
testcase_33 AC 74 ms
16,768 KB
testcase_34 AC 84 ms
19,456 KB
testcase_35 AC 10 ms
7,552 KB
testcase_36 AC 47 ms
13,440 KB
testcase_37 AC 65 ms
14,592 KB
testcase_38 AC 13 ms
5,504 KB
testcase_39 AC 21 ms
6,912 KB
testcase_40 AC 10 ms
6,656 KB
testcase_41 AC 93 ms
20,352 KB
testcase_42 AC 61 ms
14,976 KB
testcase_43 AC 126 ms
22,016 KB
testcase_44 AC 119 ms
20,480 KB
testcase_45 AC 118 ms
20,480 KB
testcase_46 AC 116 ms
20,352 KB
testcase_47 AC 122 ms
20,480 KB
testcase_48 AC 117 ms
20,224 KB
testcase_49 AC 122 ms
22,912 KB
testcase_50 AC 124 ms
21,760 KB
testcase_51 AC 125 ms
22,144 KB
testcase_52 AC 126 ms
22,016 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int popcount(int x) { return __builtin_popcount(x); }
int popcount(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;

template <bool directed = false>
struct Graph {
    struct edge {
        int to, id;
        edge(int to, int id) : to(to), id(id) {}
    };

    vector<vector<edge>> es;
    const int n;
    int m;

    Graph(int n) : es(n), n(n), m(0) {}

    void add_edge(int from, int to) {
        es[from].emplace_back(to, m);
        if (!directed) es[to].emplace_back(from, m);
        m++;
    }
};

template <bool directed = true>
struct Strongly_Connected_Components {
    struct edge {
        int to, id;
        edge(int to, int id) : to(to), id(id) {}
    };

    vector<vector<edge>> es;
    vector<int> st;
    vector<int> ord, low, comp;
    const int n;
    int m;

    Strongly_Connected_Components(int n) : es(n), ord(n), low(n), comp(n), n(n), m(0) { st.reserve(n); }

    void add_edge(int from, int to) {
        es[from].emplace_back(to, m);
        if (!directed) es[to].emplace_back(from, m);
        m++;
    }

    void _dfs(int now, int &cnt_ord, int &cnt_group) {
        ord[now] = low[now] = cnt_ord++;
        st.push_back(now);
        for (auto &e : es[now]) {
            if (ord[e.to] == -1) {
                _dfs(e.to, cnt_ord, cnt_group);
                low[now] = min(low[now], low[e.to]);
            } else {
                low[now] = min(low[now], ord[e.to]);
            }
        }
        if (low[now] == ord[now]) {
            while (true) {
                int v = st.back();
                st.pop_back();
                ord[v] = n;
                comp[v] = cnt_group;
                if (v == now) break;
            }
            cnt_group++;
        }
    }

    int decompose() {
        fill(begin(ord), end(ord), -1);
        int cnt_ord = 0, cnt_group = 0;
        for (int i = 0; i < n; i++) {
            if (ord[i] == -1) _dfs(i, cnt_ord, cnt_group);
        }
        for (int i = 0; i < n; i++) comp[i] = cnt_group - 1 - comp[i];
        return cnt_group;
    }

    Graph<true> make_graph() {
        Graph<true> G(decompose());
        for (int i = 0; i < n; i++) {
            for (auto &e : es[i]) {
                int u = comp[i], v = comp[e.to];
                if (u != v) G.add_edge(u, v);
            }
        }
        return G;
    }

    int operator[](int k) const { return comp[k]; }
};

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Mod_Int &p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<MOD>;

struct Union_Find_Tree {
    vector<int> data;
    const int n;
    int cnt;

    Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}

    int root(int x) {
        if (data[x] < 0) return x;
        return data[x] = root(data[x]);
    }

    int operator[](int i) { return root(i); }

    bool unite(int x, int y) {
        x = root(x), y = root(y);
        if (x == y) return false;
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y], data[y] = x;
        cnt--;
        return true;
    }

    int size(int x) { return -data[root(x)]; }

    int count() { return cnt; };

    bool same(int x, int y) { return root(x) == root(y); }

    void clear() {
        cnt = n;
        fill(begin(data), end(data), -1);
    }
};

void solve() {
    int N, Q;
    cin >> N >> Q;

    Strongly_Connected_Components G(2 * N);
    Union_Find_Tree uf(N);

    while (Q--) {
        int a, b, c;
        cin >> a >> b >> c;
        a--, b--;

        if (c == 0) {
            G.add_edge(a, b), G.add_edge(b, a);
            G.add_edge(a + N, b + N), G.add_edge(b + N, a + N);
        } else {
            G.add_edge(a, b + N), G.add_edge(b + N, a);
            G.add_edge(a + N, b), G.add_edge(b, a + N);
        }
        uf.unite(a, b);
    }

    G.decompose();

    rep(i, N) {
        if (G.comp[i] == G.comp[N + i]) {
            cout << "0\n";
            return;
        }
    }

    cout << mint(2).pow(uf.count()) << '\n';
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0