結果

問題 No.2279 OR Insertion
ユーザー 👑 emthrmemthrm
提出日時 2023-04-21 22:01:51
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 908 ms / 2,000 ms
コード長 6,276 bytes
コンパイル時間 3,354 ms
コンパイル使用メモリ 251,556 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-06 15:31:56
合計ジャッジ時間 26,727 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 98 ms
6,816 KB
testcase_03 AC 40 ms
6,820 KB
testcase_04 AC 821 ms
6,820 KB
testcase_05 AC 11 ms
6,816 KB
testcase_06 AC 322 ms
6,820 KB
testcase_07 AC 350 ms
6,820 KB
testcase_08 AC 104 ms
6,820 KB
testcase_09 AC 465 ms
6,820 KB
testcase_10 AC 798 ms
6,820 KB
testcase_11 AC 81 ms
6,816 KB
testcase_12 AC 620 ms
6,820 KB
testcase_13 AC 31 ms
6,820 KB
testcase_14 AC 39 ms
6,816 KB
testcase_15 AC 385 ms
6,820 KB
testcase_16 AC 6 ms
6,816 KB
testcase_17 AC 314 ms
6,820 KB
testcase_18 AC 538 ms
6,820 KB
testcase_19 AC 713 ms
6,816 KB
testcase_20 AC 355 ms
6,820 KB
testcase_21 AC 256 ms
6,816 KB
testcase_22 AC 2 ms
6,816 KB
testcase_23 AC 2 ms
6,816 KB
testcase_24 AC 2 ms
6,816 KB
testcase_25 AC 2 ms
6,820 KB
testcase_26 AC 2 ms
6,820 KB
testcase_27 AC 2 ms
6,820 KB
testcase_28 AC 2 ms
6,816 KB
testcase_29 AC 2 ms
6,816 KB
testcase_30 AC 2 ms
6,820 KB
testcase_31 AC 2 ms
6,816 KB
testcase_32 AC 907 ms
6,816 KB
testcase_33 AC 904 ms
6,816 KB
testcase_34 AC 903 ms
6,820 KB
testcase_35 AC 904 ms
6,816 KB
testcase_36 AC 908 ms
6,816 KB
testcase_37 AC 905 ms
6,816 KB
testcase_38 AC 904 ms
6,816 KB
testcase_39 AC 903 ms
6,820 KB
testcase_40 AC 904 ms
6,820 KB
testcase_41 AC 905 ms
6,820 KB
testcase_42 AC 898 ms
6,816 KB
testcase_43 AC 898 ms
6,816 KB
testcase_44 AC 896 ms
6,820 KB
testcase_45 AC 810 ms
6,820 KB
testcase_46 AC 811 ms
6,816 KB
testcase_47 AC 811 ms
6,816 KB
testcase_48 AC 865 ms
6,820 KB
testcase_49 AC 772 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int v;

  MInt() : v(0) {}
  MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}

  static constexpr int get_mod() { return M; }
  static void set_mod(const int divisor) { assert(divisor == M); }

  static void init(const int x) {
    inv<true>(x);
    fact(x);
    fact_inv(x);
  }

  template <bool MEMOIZES = false>
  static MInt inv(const int n) {
    // assert(0 <= n && n < M && std::gcd(n, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    const int prev = inverse.size();
    if (n < prev) return inverse[n];
    if constexpr (MEMOIZES) {
      // "n!" and "M" must be disjoint.
      inverse.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        inverse[i] = -inverse[M % i] * (M / i);
      }
      return inverse[n];
    }
    int u = 1, v = 0;
    for (unsigned int a = n, b = M; b;) {
      const unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }

  static MInt fact(const int n) {
    static std::vector<MInt> factorial{1};
    const int prev = factorial.size();
    if (n >= prev) {
      factorial.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        factorial[i] = factorial[i - 1] * i;
      }
    }
    return factorial[n];
  }

  static MInt fact_inv(const int n) {
    static std::vector<MInt> f_inv{1};
    const int prev = f_inv.size();
    if (n >= prev) {
      f_inv.resize(n + 1);
      f_inv[n] = inv(fact(n).v);
      for (int i = n; i > prev; --i) {
        f_inv[i - 1] = f_inv[i] * i;
      }
    }
    return f_inv[n];
  }

  static MInt nCk(const int n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
                                  fact_inv(n - k) * fact_inv(k));
  }
  static MInt nPk(const int n, const int k) {
    return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
  }
  static MInt nHk(const int n, const int k) {
    return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
  }

  static MInt large_nCk(long long n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv<true>(k);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) {
      res *= inv(i) * n--;
    }
    return res;
  }

  MInt pow(long long exponent) const {
    MInt res = 1, tmp = *this;
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }

  MInt& operator+=(const MInt& x) {
    if (std::cmp_greater_equal(v += x.v, M)) v -= M;
    return *this;
  }
  MInt& operator-=(const MInt& x) {
    if (std::cmp_greater_equal(v += M - x.v, M)) v -= M;
    return *this;
  }
  MInt& operator*=(const MInt& x) {
    v = static_cast<unsigned long long>(v) * x.v % M;
    return *this;
  }
  MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }

  auto operator<=>(const MInt& x) const = default;

  MInt& operator++() {
    if (std::cmp_equal(++v, M)) v = 0;
    return *this;
  }
  MInt operator++(int) {
    const MInt res = *this;
    ++*this;
    return res;
  }
  MInt& operator--() {
    v = (v == 0 ? M - 1 : v - 1);
    return *this;
  }
  MInt operator--(int) {
    const MInt res = *this;
    --*this;
    return res;
  }

  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(v ? M - v : 0); }

  MInt operator+(const MInt& x) const { return MInt(*this) += x; }
  MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt& x) const { return MInt(*this) /= x; }

  friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
    return os << x.v;
  }
  friend std::istream& operator>>(std::istream& is, MInt& x) {
    long long v;
    is >> v;
    x = MInt(v);
    return is;
  }
};
using ModInt = MInt<MOD>;

template <typename Abelian>
struct FenwickTree {
  explicit FenwickTree(const int n, const Abelian ID = 0)
      : n(n), ID(ID), data(n, ID) {}

  void add(int idx, const Abelian val) {
    for (; idx < n; idx |= idx + 1) {
      data[idx] += val;
    }
  }

  Abelian sum(int idx) const {
    Abelian res = ID;
    for (--idx; idx >= 0; idx = (idx & (idx + 1)) - 1) {
      res += data[idx];
    }
    return res;
  }

  Abelian sum(const int left, const int right) const {
    return left < right ? sum(right) - sum(left) : ID;
  }

  Abelian operator[](const int idx) const { return sum(idx, idx + 1); }

  int lower_bound(Abelian val) const {
    if (val <= ID) [[unlikely]] return 0;
    int res = 0;
    for (int mask = std::bit_ceil(static_cast<unsigned int>(n + 1)) >> 1;
         mask > 0; mask >>= 1) {
      const int idx = res + mask - 1;
      if (idx < n && data[idx] < val) {
        val -= data[idx];
        res += mask;
      }
    }
    return res;
  }

 private:
  const int n;
  const Abelian ID;
  std::vector<Abelian> data;
};

int main() {
  int n; string s; cin >> n >> s;
  vector<ModInt> p2(n, 1);
  FOR(i, 1, n) p2[i] = p2[i - 1] * 2;
  ModInt ans = 0;
  FenwickTree<ModInt> ft(n);
  REP(bit, n) {
    REP(i, n) {
      if (i >= bit && s[i - bit] == '1') {
        ft.add(i, ft.sum(i - bit, i));
      } else {
        ft.add(i, ft.sum(i) + 1);
      }
    }
    ans += (p2[n - 1] - ft[n - 1]) * ModInt(2).pow(bit);
    REP(i, n) ft.add(i, -ft[i]);
  }
  cout << ans << '\n';
  return 0;
}
0