結果
問題 | No.2281 K → K-1 01 Flip |
ユーザー |
👑 |
提出日時 | 2023-04-21 22:04:42 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 179 ms / 2,000 ms |
コード長 | 8,958 bytes |
コンパイル時間 | 1,133 ms |
コンパイル使用メモリ | 107,992 KB |
実行使用メモリ | 20,768 KB |
最終ジャッジ日時 | 2024-11-06 15:34:31 |
合計ジャッジ時間 | 11,599 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 56 |
ソースコード
#include <cassert>#include <cmath>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <bitset>#include <complex>#include <deque>#include <functional>#include <iostream>#include <limits>#include <map>#include <numeric>#include <queue>#include <set>#include <sstream>#include <string>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using Int = long long;template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i>= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }////////////////////////////////////////////////////////////////////////////////struct ModInt {static unsigned M;unsigned x;ModInt() : x(0U) {}ModInt(unsigned x_) : x(x_ % M) {}ModInt(unsigned long long x_) : x(x_ % M) {}ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }ModInt pow(long long e) const {if (e < 0) return inv().pow(-e);ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;}ModInt inv() const {unsigned a = M, b = x; int y = 0, z = 1;for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }assert(a == 1U); return ModInt(y);}ModInt operator+() const { return *this; }ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }explicit operator bool() const { return x; }bool operator==(const ModInt &a) const { return (x == a.x); }bool operator!=(const ModInt &a) const { return (x != a.x); }friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }};unsigned ModInt::M;////////////////////////////////////////////////////////////////////////////////// T: monoid representing information of an interval.// T() should return the identity.// T(S s) should represent a single element of the array.// T::pull(const T &l, const T &r) should pull two intervals.template <class T> struct SegmentTreePoint {int logN, n;vector<T> ts;SegmentTreePoint() {}explicit SegmentTreePoint(int n_) {for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}ts.resize(n << 1);}template <class S> explicit SegmentTreePoint(const vector<S> &ss) {const int n_ = ss.size();for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}ts.resize(n << 1);for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);build();}T &at(int i) {return ts[n + i];}void build() {for (int u = n; --u; ) pull(u);}inline void pull(int u) {ts[u].pull(ts[u << 1], ts[u << 1 | 1]);}// Changes the value of point a to s.template <class S> void change(int a, const S &s) {assert(0 <= a); assert(a < n);ts[a += n] = T(s);for (; a >>= 1; ) pull(a);}// Applies T::f(args...) to point a.template <class F, class... Args>void ch(int a, F f, Args &&... args) {assert(0 <= a); assert(a < n);(ts[a += n].*f)(args...);for (; a >>= 1; ) pull(a);}// Calculates the product for [a, b).T get(int a, int b) {assert(0 <= a); assert(a <= b); assert(b <= n);if (a == b) return T();a += n; b += n;T prodL, prodR, t;for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {if (aa & 1) { t.pull(prodL, ts[aa++]); prodL = t; }if (bb & 1) { t.pull(ts[--bb], prodR); prodR = t; }}t.pull(prodL, prodR);return t;}// Calculates T::f(args...) of a monoid type for [a, b).// op(-, -) should calculate the product.// e() should return the identity.template <class Op, class E, class F, class... Args>#if __cplusplus >= 201402Lauto#elsedecltype((std::declval<T>().*F())())#endifget(int a, int b, Op op, E e, F f, Args &&... args) {assert(0 <= a); assert(a <= b); assert(b <= n);if (a == b) return e();a += n; b += n;auto prodL = e(), prodR = e();for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);}return op(prodL, prodR);}// Find min b s.t. T::f(args...) returns true,// when called for the partition of [a, b) from left to right.// Returns n + 1 if there is no such b.template <class F, class... Args>int findRight(int a, F f, Args &&... args) {assert(0 <= a); assert(a <= n);if ((T().*f)(args...)) return a;if (a == n) return n + 1;a += n;for (; ; a >>= 1) if (a & 1) {if ((ts[a].*f)(args...)) {for (; a < n; ) {if (!(ts[a <<= 1].*f)(args...)) ++a;}return a - n + 1;}++a;if (!(a & (a - 1))) return n + 1;}}// Find max a s.t. T::f(args...) returns true,// when called for the partition of [a, b) from right to left.// Returns -1 if there is no such a.template <class F, class... Args>int findLeft(int b, F f, Args &&... args) {assert(0 <= b); assert(b <= n);if ((T().*f)(args...)) return b;if (b == 0) return -1;b += n;for (; ; b >>= 1) if ((b & 1) || b == 2) {if ((ts[b - 1].*f)(args...)) {for (; b <= n; ) {if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;}return b - n - 1;}--b;if (!(b & (b - 1))) return -1;}}};////////////////////////////////////////////////////////////////////////////////struct Node {int sz;int mx, lenL, lenR;int valL, valR;int cnt[2];Node() : sz(0), mx(0), lenL(0), lenR(0), valL(-1), valR(-1), cnt{} {}Node(int val) : sz(1), mx(1), lenL(1), lenR(1), valL(val), valR(val), cnt{} {++cnt[val];}void pull(const Node &l, const Node &r) {if (l.sz == 0) {*this = r;} else if (r.sz == 0) {*this = l;} else {sz = l.sz + r.sz;mx = max(l.mx, r.mx);lenL = l.lenL;lenR = r.lenR;valL = l.valL;valR = r.valR;if (l.valR == r.valL) {chmax(mx, l.lenR + r.lenL);if (l.sz == l.lenL) lenL += r.lenL;if (r.sz == r.lenR) lenR += l.lenR;}}for (int x = 0; x < 2; ++x) {cnt[x] = l.cnt[x] + r.cnt[x];}}};int N, Q;char S[200'010];int main() {for (; ~scanf("%d%d", &N, &Q); ) {scanf("%s", S);vector<int> ini(N);for (int i = 0; i < N; ++i) {ini[i] = S[i] - '0';}SegmentTreePoint<Node> seg(ini);for (; Q--; ) {int L, R, K;scanf("%d%d%d", &L, &R, &K);--L;const Node res = seg.get(L, R);// cerr<<"res.mx = "<<res.mx<<endl;// cerr<<"res.cnt = ";pv(res.cnt,res.cnt+2);int ans = 0;if (res.mx < K) {ans = R - L;} else {ModInt::M = 2 * K - 1;ModInt score = 0;score += ModInt(K - 1) * res.cnt[0];score += ModInt(K) * res.cnt[1];const int r = ((score / ModInt(K - 1) - K)).x;if (r < K) {ans = K - 1 + r;} else {ans = K - 1 + ((2 * K - 1) - 1 - r);}}printf("%d\n", ans);}}return 0;}