結果
問題 | No.2280 FizzBuzz Difference |
ユーザー | tokusakurai |
提出日時 | 2023-04-21 22:57:08 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,234 bytes |
コンパイル時間 | 2,330 ms |
コンパイル使用メモリ | 209,580 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-06 16:24:01 |
合計ジャッジ時間 | 2,965 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | WA | - |
testcase_02 | AC | 12 ms
5,248 KB |
testcase_03 | WA | - |
testcase_04 | AC | 13 ms
5,248 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } int popcount(int x) { return __builtin_popcount(x); } int popcount(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename T> void reorder(vector<T> &a, const vector<int> &ord) { int n = a.size(); vector<T> b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template <typename T> T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template <typename T> T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; struct Random_Number_Generator { mt19937_64 mt; Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {} // [l,r) での一様乱数 int64_t operator()(int64_t l, int64_t r) { uniform_int_distribution<int64_t> dist(l, r - 1); return dist(mt); } // [0,r) での一様乱数 int64_t operator()(int64_t r) { return (*this)(0, r); } } rng; long long modpow(long long x, long long n, const int &m) { x %= m; long long ret = 1; for (; n > 0; n >>= 1, x *= x, x %= m) { if (n & 1) ret *= x, ret %= m; } return ret; } template <typename T> T modinv(T a, const T &m) { T b = m, u = 1, v = 0; while (b > 0) { T t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return u >= 0 ? u % m : (m - (-u) % m) % m; } // ax ≡ b (mod M) を満たす非負整数 x は (存在するなら) 等差数列となる。 // (最小解, 公差) を求める。存在しない場合は (-1, -1) template <typename T> pair<T, T> linear_equation(T a, T b, T m) { a %= m, b %= m; if (a < 0) a += m; if (b < 0) b += m; T g = gcd(a, m); if (b % g != 0) return {-1, -1}; if (a == 0) return {0, 1}; a /= g, b /= g, m /= g; return {b * modinv(a, m) % m, m}; } // オイラーの φ 関数 (x と m が互いに素ならば、x^φ(m) ≡ 1 (mod m)) template <typename T> T Euler_totient(T m) { T ret = m; for (T i = 2; i * i <= m; i++) { if (m % i == 0) ret /= i, ret *= i - 1; while (m % i == 0) m /= i; } if (m > 1) ret /= m, ret *= m - 1; return ret; } // x^k ≡ y (mod m) となる最小の非負整数 k (存在しなければ -1) int modlog(int x, int y, int m, int max_ans = -1) { if (max_ans == -1) max_ans = m; long long g = 1; for (int i = m; i > 0; i >>= 1) g *= x, g %= m; g = gcd(g, m); int c = 0; long long t = 1; for (; t % g != 0; c++) { if (t == y) return c; t *= x, t %= m; } if (y % g != 0) return -1; t /= g, y /= g, m /= g; int n = 0; long long gs = 1; for (; n * n < max_ans; n++) gs *= x, gs %= m; unordered_map<int, int> mp; long long e = y; for (int i = 0; i < n; mp[e] = ++i) e *= x, e %= m; e = t; for (int i = 0; i < n; i++) { e *= gs, e %= m; if (mp.count(e)) return c + n * (i + 1) - mp[e]; } return -1; } // x^k ≡ 1 (mod m) となる最小の正整数 k (x と m は互いに素) template <typename T> T order(T x, const T &m) { T n = Euler_totient(m); vector<T> ds; for (T i = 1; i * i <= n; i++) { if (n % i == 0) ds.push_back(i), ds.push_back(n / i); } sort(begin(ds), end(ds)); for (auto &e : ds) { if (modpow(x, e, m) == 1) return e; } return -1; } // 素数 p の原始根 template <typename T> T primitive_root(const T &p) { vector<T> ds; for (T i = 1; i * i <= p - 1; i++) { if ((p - 1) % i == 0) ds.push_back(i), ds.push_back((p - 1) / i); } sort(begin(ds), end(ds)); while (true) { T r = rng(1, p); for (auto &e : ds) { if (e == p - 1) return r; if (modpow(r, e, p) == 1) break; } } } void solve() { ll M, A, B, K; cin >> M >> A >> B >> K; ll g = gcd(A, B); if (K % g != 0) { cout << "0\n"; return; } A /= g, B /= g, K /= g, M /= g; if (A > B) swap(A, B); if (K > A) { cout << "0\n"; return; } if (K < A) { ll ret = 0; // B の倍数とその前の差が K { ll x = modinv(B, A); x *= K, x %= A; // xB,(x+A)B,..., if (M >= x * B) { ret += 1 + (M - x * B) / (A * B); // } } // B の倍数とその次の差が K { ll x = modinv(B, A); x *= A - K, x %= A; // xB,(x+A)B,..., if (M >= x * B + K) { ret += 1 + (M - x * B - K) / (A * B); // } } cout << ret << '\n'; return; } if (M < A) { cout << "0\n"; return; } ll X = M / (A * B); ll ret = X * (B - A + 1); // cout << "! " << X MM ret << '\n'; M %= A * B; ll Y = M / A; ret += Y + (A * Y) / B; cout << ret - 1 << '\n'; return; } int main() { int T = 1; cin >> T; while (T--) solve(); }