結果
| 問題 |
No.8046 yukicoderの過去問
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2023-04-22 06:29:41 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,333 bytes |
| コンパイル時間 | 204 ms |
| コンパイル使用メモリ | 81,792 KB |
| 実行使用メモリ | 308,944 KB |
| 最終ジャッジ日時 | 2024-11-06 21:30:07 |
| 合計ジャッジ時間 | 6,671 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 1 -- * 8 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def FFT(polynomial0,polynomial1,digit=10**5):
def DFT(polynomial,n,inverse=False):
if inverse:
primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
else:
primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit]
else:
for bit in range(n,0,-1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t])
def FFT_(polynomial0,polynomial1):
N0=len(polynomial0)
N1=len(polynomial1)
N=N0+N1-1
n=(N-1).bit_length()
polynomial0=polynomial0+[0]*((1<<n)-N0)
polynomial1=polynomial1+[0]*((1<<n)-N1)
DFT(polynomial0,n)
DFT(polynomial1,n)
fft=[x*y for x,y in zip(polynomial0,polynomial1)]
DFT(fft,n,inverse=True)
fft=[round((fft[i]/(1<<n)).real) for i in range(N)]
return fft
N0=len(polynomial0)
N1=len(polynomial1)
N=N0+N1-1
polynomial00,polynomial01=[None]*N0,[None]*N0
polynomial10,polynomial11=[None]*N1,[None]*N1
for i in range(N0):
polynomial00[i],polynomial01[i]=divmod(polynomial0[i],digit)
for i in range(N1):
polynomial10[i],polynomial11[i]=divmod(polynomial1[i],digit)
polynomial=[0]*(N)
a=digit**2-digit
for i,x in enumerate(FFT_(polynomial00,polynomial10)):
polynomial[i]+=x*a%mod
a=digit-1
for i,x in enumerate(FFT_(polynomial01,polynomial11)):
polynomial[i]-=x*a%mod
for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial00,polynomial01)],[x1+x2 for x1,x2 in zip(polynomial10,polynomial11)])):
polynomial[i]+=x*digit%mod
polynomial[i]%=mod
return polynomial
def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False):
if ntt:
convolve=NTT
elif fft:
convolve=FFT
else:
def convolve(poly_nume,poly_deno):
conv=[0]*(len(poly_nume)+len(poly_deno)-1)
for i in range(len(poly_nume)):
for j in range(len(poly_deno)):
x=poly_nume[i]*poly_deno[j]
if mod:
x%=mod
conv[i+j]+=x
if mod:
for i in range(len(conv)):
conv[i]%=mod
return conv
while N:
poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)]
if N%2:
poly_nume=convolve(poly_nume,poly_deno_)[1::2]
else:
poly_nume=convolve(poly_nume,poly_deno_)[::2]
poly_deno=convolve(poly_deno,poly_deno_)[::2]
if fft and mod:
for i in range(len(poly_nume)):
poly_nume[i]%=mod
for i in range(len(poly_deno)):
poly_deno[i]%=mod
N//=2
return poly_nume[0]
N=int(readline())
K=int(readline())
mod=10**9+7
nume=[1]
deno=[0]*(10**5+1)
deno[0]=1
for x in map(int,readline().split()):
deno[x]=mod-1
ans=Bostan_Mori(nume,deno,N,mod=10**9+7,fft=True)
print(ans)
vwxyz