結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2023-04-22 18:47:49 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 2,549 ms / 3,000 ms |
| コード長 | 4,735 bytes |
| コンパイル時間 | 272 ms |
| コンパイル使用メモリ | 82,048 KB |
| 実行使用メモリ | 278,012 KB |
| 最終ジャッジ日時 | 2024-11-07 06:49:35 |
| 合計ジャッジ時間 | 38,098 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
import math
import sys
readline=sys.stdin.readline
from collections import Counter
mod=998244353
def NTT(polynomial0,polynomial1):
"""
if len(polynomial0)*len(polynomial1)<=50:
poly=[0]*(len(polynomial0)+len(polynomial1)-1)
for i in range(len(polynomial0)):
for j in range(len(polynomial1)):
poly[i+j]+=polynomial0[i]*polynomial1[j]%mod
poly[i+j]%=mod
return poly
"""
if mod==998244353:
prim_root=3
prim_root_inve=332748118
else:
prim_root=Primitive_Root(mod)
prim_root_inve=MOD(mod).Pow(prim_root,-1)
def DFT(polynomial,n,inverse=False):
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
x=pow(prim_root,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod
x=pow((mod+1)//2,n,mod)
for i in range(1<<n):
polynomial[i]*=x
polynomial[i]%=mod
else:
for bit in range(n,0,-1):
a=1<<bit-1
x=pow(prim_root_inve,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod
l=len(polynomial0)+len(polynomial1)-1
n=(len(polynomial0)+len(polynomial1)-2).bit_length()
polynomial0=polynomial0+[0]*((1<<n)-len(polynomial0))
polynomial1=polynomial1+[0]*((1<<n)-len(polynomial1))
DFT(polynomial0,n)
DFT(polynomial1,n)
ntt=[x*y%mod for x,y in zip(polynomial0,polynomial1)]
DFT(ntt,n,inverse=True)
ntt=ntt[:l]
return ntt
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=None):
self.p=p
self.e=e
if self.e==None:
self.mod=self.p
else:
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
if self.e==None:
for i in range(1,N+1):
self.factorial.append(self.factorial[-1]*i%self.mod)
else:
self.cnt=[0]*(N+1)
for i in range(1,N+1):
self.cnt[i]=self.cnt[i-1]
ii=i
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append(self.factorial[-1]*ii%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
if N<0:
return 0
retu=self.factorial[N]
if self.e!=None and self.cnt[N]:
retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
retu%=self.mod
return retu
def Fact_Inve(self,N):
if self.e!=None and self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
if self.e!=None:
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
S=readline().rstrip()
N=len(S)
mod=998244353
MD=MOD(mod)
MD.Build_Fact(N)
poly=[1]
for s,c in Counter(S).items():
poly=NTT(poly,[MD.Fact_Inve(i) for i in range(c+1)])
ans=sum(poly[i]*MD.Fact(i)%mod for i in range(1,N+1))%mod
print(ans)
vwxyz