結果

問題 No.2122 黄金比で擬似乱数生成
ユーザー hashiryohashiryo
提出日時 2023-04-23 15:17:19
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 26 ms / 2,000 ms
コード長 36,035 bytes
コンパイル時間 5,636 ms
コンパイル使用メモリ 279,892 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-04-25 11:20:19
合計ジャッジ時間 6,716 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
5,248 KB
testcase_01 AC 6 ms
5,248 KB
testcase_02 AC 4 ms
5,376 KB
testcase_03 AC 6 ms
5,376 KB
testcase_04 AC 5 ms
5,376 KB
testcase_05 AC 6 ms
5,376 KB
testcase_06 AC 4 ms
5,376 KB
testcase_07 AC 6 ms
5,376 KB
testcase_08 AC 6 ms
5,376 KB
testcase_09 AC 6 ms
5,376 KB
testcase_10 AC 5 ms
5,376 KB
testcase_11 AC 4 ms
5,376 KB
testcase_12 AC 6 ms
5,376 KB
testcase_13 AC 5 ms
5,376 KB
testcase_14 AC 6 ms
5,376 KB
testcase_15 AC 8 ms
5,376 KB
testcase_16 AC 15 ms
5,376 KB
testcase_17 AC 5 ms
5,376 KB
testcase_18 AC 4 ms
5,376 KB
testcase_19 AC 6 ms
5,376 KB
testcase_20 AC 6 ms
5,376 KB
testcase_21 AC 4 ms
5,376 KB
testcase_22 AC 24 ms
5,376 KB
testcase_23 AC 24 ms
5,376 KB
testcase_24 AC 25 ms
5,376 KB
testcase_25 AC 26 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "helper.cpp"
// #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
// #include <iostream>
// #include <algorithm>
// #include <random>
// clang-format off
std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
std::ostream&operator<<(std::ostream&os,const __uint128_t &v){if(!v)os<<"0";__uint128_t tmp=v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
#define checkpoint() (void(0))
#define debug(x) (void(0))
#define debugArray(x,n) (void(0))
#define debugMatrix(x,h,w) (void(0))
// clang-format on
#line 2 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/Graph/Tree.hpp"
#include <type_traits>
#line 4 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/DataStructure/CsrArray.hpp"
template <class T> struct ListRange {
 using Iterator= typename std::vector<T>::const_iterator;
 Iterator bg, ed;
 Iterator begin() const { return bg; }
 Iterator end() const { return ed; }
 size_t size() const { return std::distance(bg, ed); }
 const T &operator[](int i) const { return bg[i]; }
};
template <class T> class CsrArray {
 std::vector<T> csr;
 std::vector<int> pos;
public:
 CsrArray()= default;
 CsrArray(const std::vector<T> &c, const std::vector<int> &p): csr(c), pos(p) {}
 size_t size() const { return pos.size() - 1; }
 const ListRange<T> operator[](int i) const { return {csr.cbegin() + pos[i], csr.cbegin() + pos[i + 1]}; }
};
#line 10 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/Graph/Tree.hpp"
template <class Cost= void> class Tree {
 template <class D, class T> struct Edge_B {
  int to;
  T cost;
  operator int() const { return to; }
 };
 template <class D> struct Edge_B<D, void> {
  int to;
  operator int() const { return to; }
 };
 using Edge= Edge_B<void, Cost>;
 std::vector<std::conditional_t<std::is_same_v<Cost, void>, std::pair<int, int>, std::tuple<int, int, Cost>>> es;
 std::vector<Edge> g;
 std::vector<int> P, PP, D, I, L, R, pos;
public:
 Tree(int n): P(n, -2) {}
 template <class T= Cost, std::enable_if_t<std::is_same_v<T, void>, std::nullptr_t> = nullptr> void add_edge(int u, int v) { es.emplace_back(u, v), es.emplace_back(v, u); }
 template <class T, std::enable_if_t<std::is_convertible_v<T, Cost>, std::nullptr_t> = nullptr> void add_edge(int u, int v, T c) { es.emplace_back(u, v, c), es.emplace_back(v, u, c); }
 template <class T, class U, std::enable_if_t<std::conjunction_v<std::is_convertible<T, Cost>, std::is_convertible<U, Cost>>, std::nullptr_t> = nullptr> void add_edge(int u, int v, T c, U d) /* c:u->v, d:v->u */ { es.emplace_back(u, v, c), es.emplace_back(v, u, d); }
 void build(int root= 0) {
  size_t n= P.size();
  I.resize(n), PP.resize(n), std::iota(PP.begin(), PP.end(), 0), D.assign(n, 0), L.assign(n, 0), R.assign(n, 0), pos.resize(n + 1), g.resize(es.size());
  for (const auto &e: es) ++pos[std::get<0>(e)];
  std::partial_sum(pos.begin(), pos.end(), pos.begin());
  if constexpr (std::is_same_v<Cost, void>)
   for (const auto &[f, t]: es) g[--pos[f]]= {t};
  else
   for (const auto &[f, t, c]: es) g[--pos[f]]= {t, c};
  auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
   for (P[r]= -1, I[t++]= r; i < t; ++i)
    for (int u: operator[](v= I[i]))
     if (P[v] != u) P[I[t++]= u]= v;
  };
  f(root);
  for (size_t r= 0; r < n; ++r)
   if (P[r] == -2) f(r);
  std::vector<int> Z(n, 1), nx(n, -1);
  for (int i= n, v; i--;) {
   if (P[v= I[i]] == -1) continue;
   if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
   if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
  }
  for (int v: I)
   if (nx[v] != -1) PP[nx[v]]= v;
  for (int v: I)
   if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
  for (int i= n; i--;) L[I[i]]= i;
  for (int v: I) {
   int ir= R[v]= L[v] + Z[v];
   for (int u: operator[](v))
    if (u != P[v] && u != nx[v]) L[u]= ir-= Z[u];
   if (nx[v] != -1) L[nx[v]]= L[v] + 1;
  }
  for (int i= n; i--;) I[L[i]]= i;
 }
 size_t size() const { return P.size(); }
 const ListRange<Edge> operator[](int v) const { return {g.cbegin() + pos[v], g.cbegin() + pos[v + 1]}; }
 int depth(int v) const { return D[v]; }
 int to_seq(int v) const { return L[v]; }
 int to_node(int i) const { return I[i]; }
 int parent(int v) const { return P[v]; }
 int root(int v) const {
  for (v= PP[v];; v= PP[P[v]])
   if (P[v] == -1) return v;
 }
 bool connected(int u, int v) const { return root(u) == root(v); }
 int lca(int u, int v) const {
  for (;; v= P[PP[v]]) {
   if (L[u] > L[v]) std::swap(u, v);
   if (PP[u] == PP[v]) return u;
  }
 }
 int la(int v, int k) const {
  assert(k <= D[v]);
  for (int u;; k-= L[v] - L[u] + 1, v= P[u])
   if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
 }
 int jump(int u, int v, int k) const {
  if (!k) return u;
  if (u == v) return -1;
  if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
  int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
  return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
 }
 int dist(int u, int v) const { return depth(u) + depth(v) - depth(lca(u, v)) * 2; }
 // u is in v
 bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
 int subtree_size(int v) const { return R[v] - L[v]; }
 // half-open interval
 std::array<int, 2> subtree(int v) const { return std::array{L[v], R[v]}; }
 // sequence of closed intervals
 template <bool edge= 0> std::vector<std::array<int, 2>> path(int u, int v) const {
  std::vector<std::array<int, 2>> up, down;
  while (PP[u] != PP[v]) {
   if (L[u] < L[v]) down.emplace_back(std::array{L[PP[v]], L[v]}), v= P[PP[v]];
   else up.emplace_back(std::array{L[u], L[PP[u]]}), u= P[PP[u]];
  }
  if (L[u] < L[v]) down.emplace_back(std::array{L[u] + edge, L[v]});
  else if (L[v] + edge <= L[u]) up.emplace_back(std::array{L[u], L[v] + edge});
  return up.insert(up.end(), down.rbegin(), down.rend()), up;
 }
};
#line 3 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/Graph/FunctionalGraph.hpp"
class FunctionalGraph {
 std::vector<int> to, rt;
 Tree<> tree;
public:
 FunctionalGraph(int n): to(n, -1), rt(n, -1), tree(n + 1) {}
 void add_edge(int src, int dst) { assert(to[src] == -1), to[src]= dst; }
 void build() {
  const int n= to.size();
  for (int u, w, v= n; v--;)
   if (rt[v] == -1) {
    for (rt[v]= -2, w= to[v];; rt[w]= -2, w= to[w])
     if (assert(w != -1); rt[w] != -1) {
      if (rt[w] != -2) w= rt[w];
      break;
     }
    for (u= v; rt[u] == -2; u= to[u]) rt[u]= w;
   }
  for (int v= n; v--;)
   if (rt[v] == v) tree.add_edge(v, n);
   else tree.add_edge(v, to[v]);
  tree.build(n);
 }
 template <class Int> std::enable_if_t<std::is_convertible_v<int, Int>, int> jump(int v, Int k) const {
  int n= to.size(), d= tree.depth(v) - 1;
  if (k <= d) return tree.jump(v, n, (int)k);
  int b= to[v= rt[v]], l= (k-= d) % tree.depth(b);
  if (l == 0) return v;
  return tree.jump(b, n, l - 1);
 }
 // ((a_0,...,a_{i-1}) x 1, (a_i,...,a_{j-1}) x loop_num, (a_j,...,a_m) x 1)
 template <class Int> std::enable_if_t<std::is_convertible_v<int, Int>, std::array<std::pair<std::vector<int>, Int>, 3>> path(int v, Int k) const {
  std::array<std::pair<std::vector<int>, Int>, 3> ret;
  int n= to.size(), d= tree.depth(v) - 1;
  if (ret[0].second= 1; k <= d) {
   for (int e= k; e--; v= to[v]) ret[0].first.push_back(v);
   return ret;
  }
  for (int e= d; e--; v= to[v]) ret[0].first.push_back(v);
  int b= to[v= rt[v]], c= tree.depth(b), l= (k-= d) % c;
  ret[1].second= k / c, ret[2].second= 1;
  for (int e= c; e--; v= to[v]) ret[1].first.push_back(v);
  for (int e= l; e--; v= to[v]) ret[2].first.push_back(v);
  return ret;
 }
};
#line 2 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= uint8_t;
using u32= uint32_t;
using u64= uint64_t;
using i64= int64_t;
using u128= __uint128_t;
#define CE constexpr
#define IL inline
#define NORM \
 if (n >= mod) n-= mod; \
 return n
#define PLUS(U, M) \
 CE IL U plus(U l, U r) const { \
  if (l+= r; l >= M) l-= M; \
  return l; \
 }
#define DIFF(U, C, M) \
 CE IL U diff(U l, U r) const { \
  if (l-= r; l >> C) l+= M; \
  return l; \
 }
#define SGN(U) \
 static CE IL U set(U n) { return n; } \
 static CE IL U get(U n) { return n; } \
 static CE IL U norm(U n) { return n; }
template <class u_t, class du_t, u8 B, u8 A> struct MP_Mo {
 u_t mod;
 CE MP_Mo(): mod(0), iv(0), r2(0) {}
 CE MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
 CE IL u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
 PLUS(u_t, mod << 1)
 DIFF(u_t, A, mod << 1)
 CE IL u_t set(u_t n) const { return mul(n, r2); }
 CE IL u_t get(u_t n) const {
  n= reduce(n);
  NORM;
 }
 CE IL u_t norm(u_t n) const { NORM; }
private:
 u_t iv, r2;
 static CE u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
 CE IL u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
struct MP_Na {
 u32 mod;
 CE MP_Na(): mod(0){};
 CE MP_Na(u32 m): mod(m) {}
 CE IL u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
 PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32)
};
struct MP_Br {  // mod < 2^31
 u32 mod;
 CE MP_Br(): mod(0), s(0), x(0) {}
 CE MP_Br(u32 m): mod(m), s(95 - __builtin_clz(m - 1)), x(((u128(1) << s) + m - 1) / m) {}
 CE IL u32 mul(u32 l, u32 r) const { return rem(u64(l) * r); }
 PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) private: u8 s;
 u64 x;
 CE IL u64 quo(u64 n) const { return (u128(x) * n) >> s; }
 CE IL u32 rem(u64 n) const { return n - quo(n) * mod; }
};
struct MP_Br2 {  // 2^20 < mod <= 2^41
 u64 mod;
 CE MP_Br2(): mod(0), x(0) {}
 CE MP_Br2(u64 m): mod(m), x((u128(1) << 84) / m) {}
 CE IL u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
 PLUS(u64, mod << 1)
 DIFF(u64, 63, mod << 1)
 static CE IL u64 set(u64 n) { return n; }
 CE IL u64 get(u64 n) const { NORM; }
 CE IL u64 norm(u64 n) const { NORM; }
private:
 u64 x;
 CE IL u128 quo(const u128 &n) const { return (n * x) >> 84; }
 CE IL u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
struct MP_D2B1 {
 u8 s;
 u64 mod, d, v;
 CE MP_D2B1(): s(0), mod(0), d(0), v(0) {}
 CE MP_D2B1(u64 m): s(__builtin_clzll(m)), mod(m), d(m << s), v(u128(-1) / d) {}
 CE IL u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
 PLUS(u64, mod) DIFF(u64, 63, mod) SGN(u64) private: CE IL u64 rem(const u128 &u) const {
  u128 q= (u >> 64) * v + u;
  u64 r= u64(u) - (q >> 64) * d - d;
  if (r > u64(q)) r+= d;
  if (r >= d) r-= d;
  return r;
 }
};
template <class u_t, class MP> CE u_t pow(u_t x, u64 k, const MP &md) {
 for (u_t ret= md.set(1);; x= md.mul(x, x))
  if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
#undef NORM
#undef PLUS
#undef DIFF
#undef SGN
#undef CE
}
#line 3 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/Math/is_prime.hpp"
namespace math_internal {
template <class Uint, class MP, u64... args> constexpr bool miller_rabin(Uint n) {
 const MP md(n);
 const Uint s= __builtin_ctzll(n - 1), d= n >> s, one= md.set(1), n1= md.norm(md.set(n - 1));
 for (auto a: {args...})
  if (Uint b= a % n; b)
   if (Uint p= md.norm(pow(md.set(b), d, md)); p != one)
    for (int i= s; p != n1; p= md.norm(md.mul(p, p)))
     if (!(--i)) return 0;
 return 1;
}
constexpr bool is_prime(u64 n) {
 if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
 if (n < (1 << 30)) return miller_rabin<u32, MP_Mo<u32, u64, 32, 31>, 2, 7, 61>(n);
 if (n < (1ull << 62)) return miller_rabin<u64, MP_Mo<u64, u128, 64, 63>, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
 return miller_rabin<u64, MP_D2B1, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
}
}
using math_internal::is_prime;
#line 4 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/Math/mod_inv.hpp"
template <class Int> constexpr inline Int mod_inv(Int a, Int mod) {
 static_assert(std::is_signed_v<Int>);
 Int x= 1, y= 0, b= mod;
 for (Int q= 0, z= 0, c= 0; b;) z= x, c= a, x= y, y= z - y * (q= a / b), a= b, b= c - b * q;
 return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 4 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/Math/ModInt.hpp"
namespace math_internal {
#define CE constexpr
struct m_b {};
struct s_b: m_b {};
template <class mod_t> CE bool is_modint_v= is_base_of_v<m_b, mod_t>;
template <class mod_t> CE bool is_staticmodint_v= is_base_of_v<s_b, mod_t>;
template <class MP, u64 MOD> struct SB: s_b {
protected:
 static CE MP md= MP(MOD);
};
template <class Int, class U, class B> struct MInt: public B {
 using Uint= U;
 static CE inline auto mod() { return B::md.mod; }
 CE MInt(): x(0) {}
 CE MInt(const MInt& r): x(r.x) {}
 template <class T, enable_if_t<is_modint_v<T>, nullptr_t> = nullptr> CE MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
 template <class T, enable_if_t<is_convertible_v<T, __int128_t>, nullptr_t> = nullptr> CE MInt(T n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
 CE MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
 CE MInt name const { \
  MInt ret; \
  ret.x= op; \
  return ret; \
 }
 FUNC(operator+(const MInt& r), B::md.plus(x, r.x))
 FUNC(operator-(const MInt& r), B::md.diff(x, r.x))
 FUNC(operator*(const MInt& r), B::md.mul(x, r.x))
 FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
 CE MInt operator/(const MInt& r) const { return *this * r.inv(); }
 CE MInt& operator+=(const MInt& r) { return *this= *this + r; }
 CE MInt& operator-=(const MInt& r) { return *this= *this - r; }
 CE MInt& operator*=(const MInt& r) { return *this= *this * r; }
 CE MInt& operator/=(const MInt& r) { return *this= *this / r; }
 CE bool operator==(const MInt& r) const { return B::md.norm(x) == B::md.norm(r.x); }
 CE bool operator!=(const MInt& r) const { return !(*this == r); }
 CE bool operator<(const MInt& r) const { return B::md.norm(x) < B::md.norm(r.x); }
 CE inline MInt inv() const { return mod_inv<Int>(val(), B::md.mod); }
 CE inline Uint val() const { return B::md.get(x); }
 friend ostream& operator<<(ostream& os, const MInt& r) { return os << r.val(); }
 friend istream& operator>>(istream& is, MInt& r) {
  i64 v;
  return is >> v, r= MInt(v), is;
 }
private:
 Uint x;
};
template <u64 MOD> using ModInt= conditional_t < (MOD < (1 << 30)) & MOD, MInt<int, u32, SB<MP_Mo<u32, u64, 32, 31>, MOD>>, conditional_t < (MOD < (1ull << 62)) & MOD, MInt<i64, u64, SB<MP_Mo<u64, u128, 64, 63>, MOD>>, conditional_t<MOD<(1u << 31), MInt<int, u32, SB<MP_Na, MOD>>, conditional_t<MOD<(1ull << 32), MInt<i64, u32, SB<MP_Na, MOD>>, conditional_t<MOD <= (1ull << 41), MInt<i64, u64, SB<MP_Br2, MOD>>, MInt<i64, u64, SB<MP_D2B1, MOD>>>>>>>;
#undef CE
}
using math_internal::ModInt, math_internal::is_modint_v, math_internal::is_staticmodint_v;
template <class mod_t, size_t LM> mod_t get_inv(int n) {
 static_assert(is_modint_v<mod_t>);
 static const auto m= mod_t::mod();
 static mod_t dat[LM];
 static int l= 1;
 if (l == 1) dat[l++]= 1;
 while (l <= n) dat[l++]= dat[m % l] * (m - m / l);
 return dat[n];
}
#line 6 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/FFT/NTT.hpp"
namespace math_internal {
#define CE constexpr
#define ST static
#define TP template
#define BSF(_, n) __builtin_ctz##_(n)
TP<class mod_t> struct NTT {
#define _DFT(a, b, c, ...) \
 mod_t r, u, *x0, *x1; \
 for (int a= n, b= 1, s, i; a>>= 1; b<<= 1) \
  for (s= 0, r= I, x0= x;; r*= c[BSF(, s)], x0= x1 + p) { \
   for (x1= x0 + (i= p); i--;) __VA_ARGS__; \
   if (++s == e) break; \
  }
 ST inline void dft(int n, mod_t x[]) { _DFT(p, e, r2, x1[i]= x0[i] - (u= r * x1[i]), x0[i]+= u); }
 ST inline void idft(int n, mod_t x[]) {
  _DFT(e, p, ir2, u= x0[i] - x1[i], x0[i]+= x1[i], x1[i]= r * u)
  for (const mod_t iv= I / n; n--;) x[n]*= iv;
 }
#undef _DFT
 ST inline void even_dft(int n, mod_t x[]) {
  for (int i= 0, j= 0; i < n; i+= 2) x[j++]= iv2 * (x[i] + x[i + 1]);
 }
 ST inline void odd_dft(int n, mod_t x[], mod_t r= iv2) {
  for (int i= 0, j= 0;; r*= ir2[BSF(, ++j)])
   if (x[j]= r * (x[i] - x[i + 1]); (i+= 2) == n) break;
 }
 ST inline void dft_doubling(int n, mod_t x[], int i= 0) {
  mod_t k= I, t= rt[BSF(, n << 1)];
  for (copy_n(x, n, x + n), idft(n, x + n); i < n; ++i) x[n + i]*= k, k*= t;
  dft(n, x + n);
 }
protected:
 ST CE u64 md= mod_t::mod();
 static_assert(md & 1);
 static_assert(is_prime(md));
 ST CE u8 E= BSF(ll, md - 1);
 ST CE mod_t w= [](u8 e) {
  for (mod_t r= 2;; r+= 1)
   if (auto s= r.pow((md - 1) / 2); s != 1 && s * s == 1) return r.pow((md - 1) >> e);
  return mod_t();
 }(E);
 static_assert(w != mod_t());
 ST CE mod_t I= 1, iv2= (md + 1) / 2, iw= w.pow((1ULL << E) - 1);
 ST CE auto roots(mod_t w) {
  array<mod_t, E + 1> x= {};
  for (u8 e= E; e; w*= w) x[e--]= w;
  return x[0]= w, x;
 }
 TP<u32 N> ST CE auto ras(const array<mod_t, E + 1>& rt, const array<mod_t, E + 1>& irt, int i= N) {
  array<mod_t, E + 1 - N> x= {};
  for (mod_t ro= 1; i <= E; ro*= irt[i++]) x[i - N]= rt[i] * ro;
  return x;
 }
 ST CE auto rt= roots(w), irt= roots(iw);
 ST CE auto r2= ras<2>(rt, irt), ir2= ras<2>(irt, rt);
};
TP<class T, u8 t, class B> struct NI: public B {
 using B::B;
#define FUNC(op, name, HG, ...) \
 inline void name(__VA_ARGS__) { \
  HG(op, 1); \
  if CE (t > 1) HG(op, 2); \
  if CE (t > 2) HG(op, 3); \
  if CE (t > 3) HG(op, 4); \
  if CE (t > 4) HG(op, 5); \
 }
#define REP for (int i= b; i < e; ++i)
#define DFT(fft, _) B::ntt##_::fft(e - b, this->dt##_ + b)
#define ZEROS(op, _) fill_n(this->dt##_ + b, e - b, typename B::m##_())
#define SET(op, _) copy(x + b, x + e, this->dt##_ + b)
#define SET_S(op, _) this->dt##_[i]= x;
#define SUBST(op, _) copy(r.dt##_ + b, r.dt##_ + e, this->dt##_ + b)
#define ASGN(op, _) REP this->dt##_[i] op##= r.dt##_[i]
#define ASN(nm, op) TP<class C> FUNC(op, nm, ASGN, const NI<T, t, C>& r, int b, int e)
#define BOP(op, _) REP this->dt##_[i]= l.dt##_[i] op r.dt##_[i]
#define OP(nm, op) TP<class C, class D> FUNC(op, nm, BOP, const NI<T, t, C>& l, const NI<T, t, D>& r, int b, int e)
 OP(add, +) OP(dif, -) OP(mul, *) ASN(add, +) ASN(dif, -) ASN(mul, *) FUNC(dft, dft, DFT, int b, int e) FUNC(idft, idft, DFT, int b, int e) FUNC(__, zeros, ZEROS, int b, int e) FUNC(__, set, SET, const T x[], int b, int e) FUNC(__, set, SET_S, int i, T x) TP<class C> FUNC(__, subst, SUBST, const NI<T, t, C>& r, int b, int e) inline void get(T x[], int b, int e) const {
  if CE (t == 1) copy(this->dt1 + b, this->dt1 + e, x + b);
  else REP x[i]= get(i);
 }
#define TMP(_) B::iv##_##1 * (this->dt##_[i] - r1)
 inline T get(int i) const {
  if CE (t > 1) {
   u64 r1= this->dt1[i].val(), r2= (TMP(2)).val();
   T a= 0;
   if CE (t > 2) {
    u64 r3= (TMP(3) - B::iv32 * r2).val();
    if CE (t > 3) {
     u64 r4= (TMP(4) - B::iv42 * r2 - B::iv43 * r3).val();
     if CE (t > 4) a= T(B::m4::mod()) * (TMP(5) - B::iv52 * r2 - B::iv53 * r3 - B::iv54 * r4).val();
     a= (a + r4) * B::m3::mod();
    }
    a= (a + r3) * B::m2::mod();
   }
   return (a + r2) * B::m1::mod() + r1;
  } else return this->dt1[i];
 }
#undef TMP
#undef DFT
#undef ZEROS
#undef SET
#undef SET_S
#undef SUBST
#undef ASGN
#undef ASN
#undef BOP
#undef OP
#undef FUNC
#undef REP
};
#define ARR(_) \
 using m##_= ModInt<M##_>; \
 using ntt##_= NTT<m##_>; \
 m##_ dt##_[LM]= {};
#define IV2 ST CE m2 iv21= m2(1) / m1::mod();
#define IV3 ST CE m3 iv32= m3(1) / m2::mod(), iv31= iv32 / m1::mod();
#define IV4 ST CE m4 iv43= m4(1) / m3::mod(), iv42= iv43 / m2::mod(), iv41= iv42 / m1::mod();
#define IV5 ST CE m5 iv54= m5(1) / m4::mod(), iv53= iv54 / m3::mod(), iv52= iv53 / m2::mod(), iv51= iv52 / m1::mod();
TP<u8 t, u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM, bool v> struct NB { ARR(1) };
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<2, M1, M2, M3, M4, M5, LM, 0> { ARR(1) ARR(2) IV2 };
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<3, M1, M2, M3, M4, M5, LM, 0> { ARR(1) ARR(2) ARR(3) IV2 IV3 };
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<4, M1, M2, M3, M4, M5, LM, 0> { ARR(1) ARR(2) ARR(3) ARR(4) IV2 IV3 IV4 };
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<5, M1, M2, M3, M4, M5, LM, 0> { ARR(1) ARR(2) ARR(3) ARR(4) ARR(5) IV2 IV3 IV4 IV5 };
#undef ARR
#define VC(_) \
 using m##_= ModInt<M##_>; \
 using ntt##_= NTT<m##_>; \
 vector<m##_> bf##_; \
 m##_* dt##_;
#define RS resize
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<1, M1, M2, M3, M4, M5, LM, 1> {
 NB(): dt1(bf1.data()) {}
 void RS(int n) { bf1.RS(n), dt1= bf1.data(); }
 u32 size() const { return bf1.size(); }
 VC(1)
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<2, M1, M2, M3, M4, M5, LM, 1> {
 NB(): dt1(bf1.data()), dt2(bf2.data()) {}
 void RS(int n) { bf1.RS(n), dt1= bf1.data(), bf2.RS(n), dt2= bf2.data(); }
 u32 size() const { return bf1.size(); }
 VC(1) VC(2) IV2
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<3, M1, M2, M3, M4, M5, LM, 1> {
 NB(): dt1(bf1.data()), dt2(bf2.data()), dt3(bf3.data()) {}
 void RS(int n) { bf1.RS(n), dt1= bf1.data(), bf2.RS(n), dt2= bf2.data(), bf3.RS(n), dt3= bf3.data(); }
 u32 size() const { return bf1.size(); }
 VC(1) VC(2) VC(3) IV2 IV3
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<4, M1, M2, M3, M4, M5, LM, 1> {
 NB(): dt1(bf1.data()), dt2(bf2.data()), dt3(bf3.data()), dt4(bf4.data()) {}
 void RS(int n) { bf1.RS(n), dt1= bf1.data(), bf2.RS(n), dt2= bf2.data(), bf3.RS(n), dt3= bf3.data(), bf4.RS(n), dt4= bf4.data(); }
 u32 size() const { return bf1.size(); }
 VC(1) VC(2) VC(3) VC(4) IV2 IV3 IV4
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<5, M1, M2, M3, M4, M5, LM, 1> {
 NB(): dt1(bf1.data()), dt2(bf2.data()), dt3(bf3.data()), dt4(bf4.data()), dt5(bf5.data()) {}
 void RS(int n) { bf1.RS(n), dt1= bf1.data(), bf2.RS(n), dt2= bf2.data(), bf3.RS(n), dt3= bf3.data(), bf4.RS(n), dt4= bf4.data(), bf5.RS(n), dt5= bf5.data(); }
 u32 size() const { return bf1.size(); }
 VC(1) VC(2) VC(3) VC(4) VC(5) IV2 IV3 IV4 IV5
};
#undef VC
#undef IV2
#undef IV3
#undef IV4
#undef IV5
TP<class T, u32 LM> CE bool is_nttfriend() {
 if CE (!is_staticmodint_v<T>) return 0;
 else return (T::mod() & is_prime(T::mod())) && LM <= (1ULL << BSF(ll, T::mod() - 1));
}
TP<class T, enable_if_t<is_arithmetic_v<T>, nullptr_t> = nullptr> CE u64 mv() { return numeric_limits<T>::max(); }
TP<class T, enable_if_t<is_staticmodint_v<T>, nullptr_t> = nullptr> CE u64 mv() { return T::mod(); }
TP<class T, u32 LM, u32 M1, u32 M2, u32 M3, u32 M4> CE u8 nt() {
 if CE (!is_nttfriend<T, LM>()) {
  CE u128 m= mv<T>(), mm= m * m;
  if CE (mm <= M1 / LM) return 1;
  else if CE (mm <= u64(M1) * M2 / LM) return 2;
  else if CE (mm <= u128(M1) * M2 * M3 / LM) return 3;
  else if CE (mm <= u128(M1) * M2 * M3 * M4 / LM) return 4;
  else return 5;
 } else return 1;
}
#undef BSF
#undef RS
CE u32 MOD1= 998244353, MOD2= 897581057, MOD3= 880803841, MOD4= 754974721, MOD5= 645922817;
TP<class T, u32 LM> CE u8 nttarr_type= nt<T, LM, MOD1, MOD2, MOD3, MOD4>();
TP<class T, u32 LM> CE u8 nttarr_cat= is_nttfriend<T, LM>() && (mv<T>() > (1 << 30)) ? 0 : nttarr_type<T, LM>;
TP<class T, u32 LM, bool v> using NTTArray= NI<T, nttarr_type<T, LM>, conditional_t<is_nttfriend<T, LM>(), NB<1, mv<T>(), 0, 0, 0, 0, LM, v>, NB<nttarr_type<T, LM>, MOD1, MOD2, MOD3, MOD4, MOD5, LM, v>>>;
#undef CE
#undef ST
#undef TP
}
using math_internal::is_nttfriend, math_internal::nttarr_type, math_internal::nttarr_cat, math_internal::NTT, math_internal::NTTArray;
template <class T, size_t LM, int id= 0> struct GlobalNTTArray { static inline NTTArray<T, LM, 0> bf; };
template <class T, size_t LM, size_t LM2, int id= 0> struct GlobalNTTArray2D { static inline NTTArray<T, LM, 0> bf[LM2]; };
template <class T, size_t LM, int id= 0> struct GlobalArray { static inline T bf[LM]; };
constexpr unsigned pw2(unsigned n) { return --n, n|= n >> 1, n|= n >> 2, n|= n >> 4, n|= n >> 8, n|= n >> 16, ++n; }
#line 6 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/FFT/fps_inv.hpp"
namespace math_internal {
template <u32 LM, class mod_t> inline void inv_base(const mod_t p[], int n, mod_t r[], int i= 1, int l= -1) {
 static constexpr int t= nttarr_cat<mod_t, LM>, TH= (int[]){64, 64, 128, 256, 512, 512}[t];
 if (n <= i) return;
 if (l < 0) l= n;
 assert(((n & -n) == n)), assert(i && ((i & -i) == i));
 const mod_t miv= -r[0];
 for (int j, m= min(n, TH); i < m; r[i++]*= miv)
  for (r[i]= mod_t(), j= min(i + 1, l); --j;) r[i]+= r[i - j] * p[j];
 static constexpr int lnR= 2 + (!t), R= (1 << lnR) - 1;
 using GNA1= GlobalNTTArray<mod_t, LM, 1>;
 using GNA2= GlobalNTTArray<mod_t, LM, 2>;
 for (auto gt1= GlobalNTTArray2D<mod_t, LM, R, 1>::bf, gt2= GlobalNTTArray2D<mod_t, LM, R, 2>::bf; i < n;) {
  mod_t* rr= r;
  const mod_t* pp= p;
  const int s= i, e= s << 1, ss= (l - 1) / s;
  for (int k= 0, j; i < n && k < R; ++k, i+= s, pp+= s) {
   if (j= min(e, l - k * s); j > 0) gt2[k].set(pp, 0, j), gt2[k].zeros(j, e), gt2[k].dft(0, e);
   for (gt1[k].set(rr, 0, s), gt1[k].zeros(s, e), gt1[k].dft(0, e), GNA2::bf.mul(gt1[k], gt2[0], 0, e), j= min(k, ss) + 1; --j;) GNA1::bf.mul(gt1[k - j], gt2[j], 0, e), GNA2::bf.add(GNA1::bf, 0, e);
   GNA2::bf.idft(0, e), GNA2::bf.zeros(0, s);
   if constexpr (!is_nttfriend<mod_t, LM>()) GNA2::bf.get(rr, s, e), GNA2::bf.set(rr, s, e);
   for (GNA2::bf.dft(0, e), GNA2::bf.mul(gt1[0], 0, e), GNA2::bf.idft(0, e), GNA2::bf.get(rr, s, e), rr+= j= s; j--;) rr[j]= -rr[j];
  }
 }
}
template <u32 lnR, class mod_t, u32 LM= 1 << 22> void inv_(const mod_t p[], int n, mod_t r[]) {
 static constexpr u32 R= (1 << lnR) - 1, LM2= LM >> (lnR - 1);
 using GNA1= GlobalNTTArray<mod_t, LM2, 1>;
 using GNA2= GlobalNTTArray<mod_t, LM2, 2>;
 auto gt1= GlobalNTTArray2D<mod_t, LM2, R, 1>::bf, gt2= GlobalNTTArray2D<mod_t, LM2, R, 2>::bf;
 assert(n > 0), assert(p[0] != mod_t());
 const int m= pw2(n) >> lnR, m2= m << 1, ed= (n - 1) / m;
 inv_base<LM2>(p, m, r);
 for (int k= 0, l; k < ed; p+= m) {
  for (gt2[k].set(p, 0, l= min(m2, n - m * k)), gt2[k].zeros(l, m2), gt2[k].dft(0, m2), gt1[k].set(r, 0, m), gt1[k].zeros(m, m2), gt1[k].dft(0, m2), GNA2::bf.mul(gt1[k], gt2[0], 0, m2), l= k; l--;) GNA1::bf.mul(gt1[l], gt2[k - l], 0, m2), GNA2::bf.add(GNA1::bf, 0, m2);
  GNA2::bf.idft(0, m2), GNA2::bf.zeros(0, m);
  if constexpr (!is_nttfriend<mod_t, LM>()) GNA2::bf.get(r, m, m2), GNA2::bf.set(r, m, m2);
  for (GNA2::bf.dft(0, m2), GNA2::bf.mul(gt1[0], 0, m2), GNA2::bf.idft(0, m2), GNA2::bf.get(r, m, m + (l= min(m, n - m * ++k))), r+= m; l--;) r[l]= -r[l];
 }
}
template <class mod_t, u32 LM= 1 << 22> vector<mod_t> inv(const vector<mod_t>& p) {
 static constexpr int t= nttarr_cat<mod_t, LM>, TH= (int[]){234, 106, 280, 458, 603, 861}[t];
 mod_t *pp= GlobalArray<mod_t, LM, 1>::bf, *r= GlobalArray<mod_t, LM, 2>::bf;
 const int n= p.size();
 copy_n(p.begin(), n, pp), assert(n > 0), assert(p[0] != mod_t());
 if (const mod_t miv= -(r[0]= mod_t(1) / p[0]); n > TH) {
  const int l= pw2(n), l1= l >> 1, k= (n - l1 - 1) / (l1 >> 3), bl= __builtin_ctz(l1);
  int a= 4;
  if constexpr (!t) a= bl < 8 ? k > 5 ? 1 : 3 : bl < 9 ? k & 1 ? 3 : 4 : bl < 10 ? k & 1 && k > 4 ? 3 : 4 : bl < 11 ? k > 6 ? 3 : 4 : 4;
  else if constexpr (t < 2) a= bl < 7 ? 2 : bl < 9 ? k ? 3 : 4 : k & 1 ? 3 : 4;
  else if constexpr (t < 3) a= bl < 9 ? k > 5 ? 1 : k ? 3 : 4 : k & 1 ? 3 : 4;
  else if constexpr (t < 4) a= bl < 9 ? 1 : bl < 10 ? k > 5 ? 1 : !k ? 4 : k & 2 ? 2 : 3 : k & 1 ? 3 : 4;
  else if constexpr (t < 5) a= bl < 10 ? k & 2 ? 2 : 3 : k & 1 ? 3 : 4;
  else a= bl < 10 ? 1 : bl < 11 ? k > 5 ? 1 : !k ? 4 : k & 2 ? 2 : 3 : k & 1 ? 3 : 4;
  (a < 2 ? inv_<1, mod_t, LM> : a < 3 ? inv_<2, mod_t, LM> : a < 4 ? inv_<3, mod_t, LM> : inv_<4, mod_t, LM>)(pp, n, r);
 } else
  for (int j, i= 1; i < n; r[i++]*= miv)
   for (r[j= i]= mod_t(); j--;) r[i]+= r[j] * pp[i - j];
 return vector(r, r + n);
}
}
using math_internal::inv_base, math_internal::inv;
#line 5 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/FFT/convolve.hpp"
template <class mod_t, size_t LM= 1 << 22> std::vector<mod_t> convolve(const std::vector<mod_t>& p, const std::vector<mod_t>& q) {
 mod_t *pp= GlobalArray<mod_t, LM, 0>::bf, *qq= GlobalArray<mod_t, LM, 1>::bf, *rr= GlobalArray<mod_t, LM, 2>::bf;
 static constexpr int t= nttarr_cat<mod_t, LM>, TH= (int[]){70, 30, 70, 100, 135, 150}[t];
 auto f= [](int l) -> int {
  static constexpr double B[]= {(double[]){8.288, 5.418, 7.070, 9.676, 11.713, 13.374}[t], (double[]){8.252, 6.578, 9.283, 12.810, 13.853, 15.501}[t]};
  return std::round(std::pow(l, 0.535) * B[__builtin_ctz(l) & 1]);
 };
 const int n= p.size(), m= q.size(), sz= n + m - 1;
 if (!n || !m) return std::vector<mod_t>();
 if (std::min(n, m) < TH) {
  std::fill_n(rr, sz, mod_t()), std::copy(p.begin(), p.end(), pp), std::copy(q.begin(), q.end(), qq);
  for (int i= n; i--;)
   for (int j= m; j--;) rr[i + j]+= pp[i] * qq[j];
 } else {
  const int rl= pw2(sz), l= pw2(std::max(n, m)), fl= f(l);
  static constexpr size_t LM2= LM >> 3;
  static constexpr bool b= nttarr_cat<mod_t, LM2> < t;
  if (b || (l + fl < sz && sz <= (rl >> 3) * 5)) {
   using GNA1= GlobalNTTArray<mod_t, LM2, 1>;
   using GNA2= GlobalNTTArray<mod_t, LM2, 2>;
   auto gt1= GlobalNTTArray2D<mod_t, LM2, 16, 1>::bf, gt2= GlobalNTTArray2D<mod_t, LM2, 16, 2>::bf;
   const int l= rl >> 4, l2= l << 1, nn= (n + l - 1) / l, mm= (m + l - 1) / l, ss= nn + mm - 1;
   for (int i= 0, k= 0, s; k < n; ++i, k+= l) gt1[i].set(p.data() + k, 0, s= std::min(l, n - k)), gt1[i].zeros(s, l2), gt1[i].dft(0, l2);
   if (&p != &q)
    for (int i= 0, k= 0, s; k < m; ++i, k+= l) gt2[i].set(q.data() + k, 0, s= std::min(l, m - k)), gt2[i].zeros(s, l2), gt2[i].dft(0, l2);
   else
    for (int i= nn; i--;) gt2[i].subst(gt1[i], 0, l2);
   GNA2::bf.mul(gt1[0], gt2[0], 0, l2), GNA2::bf.idft(0, l2), GNA2::bf.get(rr, 0, l2);
   for (int i= 1, k= l, j, ed; i < ss; ++i, k+= l) {
    for (j= std::max(0, i - nn + 1), ed= std::min(mm - 1, i), GNA2::bf.mul(gt1[i - ed], gt2[ed], 0, l2); j < ed; ++j) GNA1::bf.mul(gt1[i - j], gt2[j], 0, l2), GNA2::bf.add(GNA1::bf, 0, l2);
    for (GNA2::bf.idft(0, l2), GNA2::bf.get(pp, 0, j= std::min(l, sz - k)); j--;) rr[k + j]+= pp[j];
    if (l < sz - k) GNA2::bf.get(rr + k, l, std::min(l2, sz - k));
   }
  } else {
   using GNA1= GlobalNTTArray<mod_t, LM, 1>;
   using GNA2= GlobalNTTArray<mod_t, LM, 2>;
   const int len= sz <= l + fl ? l : rl;
   if (GNA1::bf.set(p.data(), 0, n), GNA1::bf.zeros(n, len), GNA1::bf.dft(0, len); &p != &q) GNA2::bf.set(q.data(), 0, m), GNA2::bf.zeros(m, len), GNA2::bf.dft(0, len), GNA1::bf.mul(GNA2::bf, 0, len);
   else GNA1::bf.mul(GNA1::bf, 0, len);
   if (GNA1::bf.idft(0, len), GNA1::bf.get(rr, 0, std::min(sz, len)); len < sz) {
    std::copy(p.begin() + len - m + 1, p.end(), pp + len - m + 1), std::copy(q.begin() + len - n + 1, q.end(), qq + len - n + 1);
    for (int i= len, j; i < sz; rr[i - len]-= rr[i], ++i)
     for (rr[i]= mod_t(), j= i - m + 1; j < n; ++j) rr[i]+= pp[j] * qq[i - j];
   }
  }
 }
 return std::vector(rr, rr + sz);
}
#line 4 "/Users/hashimotoryoma/code/CompetitiveProgramming/Library/Library/src/FFT/bostan_mori.hpp"
namespace div_at_internal {
template <class K> int deg(const std::vector<K> &p) {
 const K ZERO= 0;
 for (int n= p.size() - 1;; n--)
  if (n < 0 || p[n] != ZERO) return n;
}
template <class mod_t> void div_at_na(std::vector<mod_t> &p, std::vector<mod_t> &q, std::uint64_t &k) {
 unsigned n= deg(p), nn, j;
 const unsigned m= deg(q), l= std::max(n, m) + 1;
 std::vector<mod_t> tmp(l);
 for (p.resize(l), q.resize(l); k > m; q.swap(p), p.swap(tmp)) {
  std::fill_n(tmp.begin(), (nn= (n + m - ((n ^ m ^ k) & 1)) >> 1) + 1, mod_t());
  for (j= 0; j <= m; j+= 2)
   for (int i= k & 1; i <= n; i+= 2) tmp[(i + j) >> 1]+= p[i] * q[j];
  for (j= 1; j <= m; j+= 2)
   for (int i= (~k) & 1; i <= n; i+= 2) tmp[(i + j) >> 1]-= p[i] * q[j];
  for (std::fill_n(p.begin(), m + 1, mod_t()), j= 2; j <= m; j+= 2)
   for (int i= j; (i-= 2) >= 0;) p[(i + j) >> 1]+= q[i] * q[j];
  for (k>>= 1, n= nn, j= 3; j <= m; j+= 2)
   for (int i= j; (i-= 2) >= 0;) p[(i + j) >> 1]-= q[i] * q[j];
  for (int i= m; i >= 0; i--) p[i]+= p[i];
  for (int i= 0; i <= m; i+= 2) p[i]+= q[i] * q[i];
  for (int i= 1; i <= m; i+= 2) p[i]-= q[i] * q[i];
 }
 p.resize(n + 1), q.resize(m + 1);
}
template <std::size_t LM, class mod_t> void div_at_ntt(std::vector<mod_t> &p, std::vector<mod_t> &q, std::uint64_t &k) {
 static_assert(!is_nttfriend<mod_t, LM>());
 using GNA= GlobalNTTArray<mod_t, LM, 0>;
 using GNA1= GlobalNTTArray<mod_t, LM, 1>;
 using GNA2= GlobalNTTArray<mod_t, LM, 2>;
 const unsigned m= deg(q) + 1, offset= std::max<unsigned>(deg(p) + 1, m), len= pw2((offset + m) - 1);
 for (p.resize(len >> 1); k >= offset; k>>= 1) {
  GNA::bf.set(p.data(), 0, len >> 1), GNA::bf.zeros(len >> 1, len), GNA1::bf.set(q.data(), 0, m), GNA1::bf.zeros(m, len), GNA2::bf.zeros(m, len);
  for (int i= m; i--;) GNA2::bf.set(i, i & 1 ? -q[i] : q[i]);
  GNA::bf.dft(0, len), GNA1::bf.dft(0, len), GNA2::bf.dft(0, len), GNA::bf.mul(GNA2::bf, 0, len), GNA::bf.idft(0, len), GNA1::bf.mul(GNA2::bf, 0, len), GNA1::bf.idft(0, len);
  for (int i= k & 1; i < len; i+= 2) p[i >> 1]= GNA::bf.get(i);
  for (int i= m; i--;) q[i]= GNA1::bf.get(i << 1);
 }
}
template <std::size_t LM, class mod_t> void div_at_ntt_fast(std::vector<mod_t> &p, std::vector<mod_t> &q, std::uint64_t &k) {
 static_assert(is_nttfriend<mod_t, LM>());
 using ntt= NTT<mod_t>;
 const unsigned m= deg(q) + 1, offset= std::max<unsigned>(deg(p) + 1, m), len= pw2((offset + m) - 1), len2= len >> 1;
 p.resize(len), q.resize(len), ntt::dft(len, p.data()), ntt::dft(len, q.data());
 while (1) {
  for (int i= len; i--;) p[i]*= q[i ^ 1];
  k & 1 ? ntt::odd_dft(len, p.data()) : ntt::even_dft(len, p.data());
  for (int i= 0; i < len; i+= 2) q[i]= q[i + 1]= q[i] * q[i + 1];
  ntt::even_dft(len, q.data());
  if ((k>>= 1) < offset) break;
  ntt::dft_doubling(len2, p.data()), ntt::dft_doubling(len2, q.data());
 }
 ntt::idft(len2, p.data()), ntt::idft(len2, q.data());
}
}  // namespace div_at_internal
#define __FPS_DIVAT(Vec) \
 template <class mod_t, std::size_t LM= 1 << 22> mod_t div_at(Vec p, Vec q, std::uint64_t k) { \
  using namespace div_at_internal; \
  const int n= deg(p) + 1, m= deg(q) + 1; \
  assert(m != 0); \
  mod_t ret= 0; \
  if (n == 0) return ret; \
  if (m == 1) return k <= (std::uint64_t)n ? p[k] / q[0] : ret; \
  if (k >= m) { \
   if constexpr (is_nttfriend<mod_t, LM>()) m <= 44 ? div_at_na(p, q, k) : div_at_ntt_fast<LM>(p, q, k); \
   else m <= 340 ? div_at_na(p, q, k) : div_at_ntt<LM>(p, q, k); \
  } \
  p.resize(k + 1, ret), q.resize(k + 1, ret), q= inv<mod_t, LM>(q); \
  for (int i= k; i >= 0; i--) ret+= q[i] * p[k - i]; \
  return ret; \
 }

__FPS_DIVAT(std::vector<mod_t>)
#ifdef __POLYNOMIAL
__FPS_DIVAT(__POLYNOMIAL)
#endif
// a[n] = c[0] * a[n-1] + c[1] * a[n-2] + ... + c[d-1] * a[n-d]
// return a[k]
template <class mod_t, std::size_t LM= 1 << 22> mod_t linear_recurrence(std::vector<mod_t> c, std::vector<mod_t> a, std::uint64_t k) {
 const std::size_t d= c.size();
 assert(d <= a.size());
 for (auto &x: c) x= -x;
 c.insert(c.begin(), mod_t(1)), a.resize(d);
 auto p= convolve<mod_t, LM>(c, a);
 return p.resize(d), div_at<mod_t, LM>(p, c, k);
}
#line 18 "helper.cpp"
using namespace std;
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 constexpr int N= 10000;
 using Mint= ModInt<N>;
 string s;
 cin >> s;
 int a= stoi(s);
 long long M, L;
 cin >> M >> L;
 FunctionalGraph graph(N);
 for (int n= 0; n < N; ++n) {
  auto x= linear_recurrence<Mint>({n, 1}, {0, 1}, M);
  if (M & 1) x-= 1;
  graph.add_edge(n, x.val());
 }
 graph.build();
 string ans= to_string(graph.jump(a, L));
 ans= string(4 - ans.length(), '0') + ans;
 cout << ans << '\n';
 return 0;
}
0