結果
問題 | No.5007 Steiner Space Travel |
ユーザー | dna4_ |
提出日時 | 2023-04-24 16:52:50 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 7,694 bytes |
コンパイル時間 | 433 ms |
コンパイル使用メモリ | 87,468 KB |
実行使用メモリ | 79,924 KB |
スコア | 0 |
最終ジャッジ日時 | 2023-04-24 16:53:05 |
合計ジャッジ時間 | 11,351 ms |
ジャッジサーバーID (参考情報) |
judge15 / judge12 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
ソースコード
import sys import time import random import math random.seed(42) INF = 10**18 alpha = 5 alpha2 = alpha * alpha def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) class TimeKeeper: """ 時間を管理するクラス 時間制限を秒単位で指定してインスタンスをつくる """ def __init__(self, time_threshold) -> None: self.start_time_ = time.time() self.time_threshold_ = time_threshold def isTimeOver(self) -> bool: """ インスタンスを生成した時から指定した時間制限を超過したか判断する 超過している場合にTrue """ return time.time() - self.start_time_ - self.time_threshold_ >= 0 def time_msec(self) -> int: """経過時間をミリ秒単位で返す""" return int((time.time() - self.start_time_) * 1000) def time_sec(self) -> int: """経過時間を秒単位で返す(time_msecの使用を推奨)""" return time.time()-self.start_time_ class Kmeans: def __init__(self, X:list, n_data:int, k:int): self.x = [[t.x, t.y] for t in X] self.n_data = n_data self.k = k def init_centroid(self): idx = random.sample(range(self.n_data), self.k) centroids = [self.x[i] for i in idx] return centroids def compute_distance(self, centroids): distances = [] for x in self.x: dist = [math.sqrt(sum([(a - b) ** 2 for a, b in zip(x, centroid)])) for centroid in centroids] distances.append(dist) return distances def clustering(self): centroids = self.init_centroid() new_cluster = [0]*self.n_data cluster = [0]*self.n_data for epoch in range(300): distances = self.compute_distance(centroids) new_cluster = [min(range(len(d)), key=lambda i: d[i]) for d in distances] for idx_centroid in range(self.k): x_in_cluster = [self.x[i] for i in range(self.n_data) if new_cluster[i] == idx_centroid] if x_in_cluster: centroids[idx_centroid] = [int(sum(coord)/len(x_in_cluster)) for coord in zip(*x_in_cluster)] if new_cluster == cluster: break cluster = new_cluster eprint(centroids) eprint(cluster) return centroids class Input: def __init__(self, N:int, M:int, ab:list) -> None: self.N = N self.M = M self.ab = ab class Parser: def __init__(self, input_type:int): self.flag = input_type def parse(self): if self.flag == -1: inp:Input = self.parse_input() else: inp:Input = self.parse_input_file(self.flag) return inp def parse_input(self) -> Input: N,M = map(int,input().split()) ab = [list(map(int,input().split())) for i in range(N)] return Input(N,M,ab) def parse_input_file(self,num) -> Input: cnt = str(num).zfill(4) PATH = f"./in/{cnt}.txt" with open(PATH) as f: l = [s.strip() for s in f.readlines()] N, M = map(int,l[0].split()) ab = [list(map(int,s.split())) for s in l[1:]] return Input(N, M, ab) class Transit: def __init__(self, id:int, x:int, y:int, type:int) -> None: """ id:int id of planet or station x:int x coordinate y:int y coordinate type:int 1 planet, 2 station """ self.id = id self.x = x self.y = y self.type = type def __str__(self) -> str: return f"({self.id},{self.x},{self.y},{self.type})" class State: def __init__(self, order:list, q_planets:list, q_stations:list) -> None: """ order:list visited order q_stations:list[(int,int)] coordinates of space station """ self.order = order self.q_planets = q_planets self.q_stations = q_stations def cal_dist(self, v1:Transit, v2:Transit) -> float: """ return distance between v1 and v2 weighted by coefficient """ x1,y1 = v1.x, v1.y x2,y2 = v2.x, v2.y coef = alpha if v1.type == 1 and v2.type == 1: coef = alpha2 # planet to planet elif v1.type == 2 and v2.type == 2: coef = 1 # station to station d = ((x1-x2)**2+(y1-y2)**2) * coef return d def cal_score(self): score = 0 for i in range(len(self.order)-1): score += self.cal_dist(self.order[i], self.order[i+1]) return int(pow(10,9)/(1000+score**0.5)) class Output: def __init__(self, state:State) -> None: self.order = state.order self.q_stations = state.q_stations def ans(self): for transition in self.q_stations: print(transition.x, transition.y) print(len(self.order)) for transition in self.order: print(transition.type, transition.id+1) class Solver: def __init__(self, state:State) -> None: self.state = state def solve(self): self.state.order.append(self.state.q_planets[0]) visited = [0]*len(self.state.q_planets) visited[0] = 1 now = self.state.q_planets[0] next = Transit(-1,-1,-1,-1) n_visited = 1 while n_visited < len(self.state.q_planets): d_min = INF for transtion in self.state.q_planets: if visited[transtion.id] == 1: continue d = self.state.cal_dist(now, transtion) if d_min > d: d_min = d next = transtion if now.type != 2: #station to stationを許可するときはこのif文を消す 要改善 for transtion in self.state.q_stations: if now == transtion: continue d = self.state.cal_dist(now, transtion) if d_min > d: d_min = d next = transtion now = next self.state.order.append(next) if next.type == 1 and visited[next.id] == 0: visited[next.id] = 1 n_visited += 1 self.state.order.append(self.state.q_planets[0]) return self.state def main(): parser = Parser(0) input = parser.parse() q_planets = [] for i in range(input.N): q_planets.append(Transit(id = i, x = input.ab[i][0], y = input.ab[i][1], type = 1)) kmeans = Kmeans(q_planets, 100, 8) a = kmeans.clustering() q_stations = [] for i in range(input.M): q_stations.append(Transit(id = i,x = a[i][0],y = a[i][1],type = 2)) state = State([], q_planets, q_stations) solver = Solver(state) best_ans = solver.solve() best_score = best_ans.cal_score() eprint(best_score) tmp_stations = best_ans.q_stations timeKeeper2 = TimeKeeper(0.84) while not timeKeeper2.isTimeOver(): order = [] q_stations = [] for i in range(input.M): q_stations.append(Transit(id = i,x = tmp_stations[i].x+random.randrange(-20,20), y = tmp_stations[i].y+random.randrange(-20,20), type = 2)) state = State(order,q_planets,q_stations) solver = Solver(state) ans = solver.solve() score = ans.cal_score() #eprint(score) if score > best_score: best_score = score best_ans = ans tmp_stations = q_stations eprint(best_score) output = Output(best_ans) output.ans() if __name__ == "__main__": main()