結果
| 問題 |
No.5007 Steiner Space Travel
|
| コンテスト | |
| ユーザー |
dna4_
|
| 提出日時 | 2023-04-24 16:58:51 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 7,695 bytes |
| コンパイル時間 | 320 ms |
| コンパイル使用メモリ | 87,076 KB |
| 実行使用メモリ | 83,096 KB |
| スコア | 0 |
| 最終ジャッジ日時 | 2023-04-24 16:59:31 |
| 合計ジャッジ時間 | 36,523 ms |
|
ジャッジサーバーID (参考情報) |
judge14 / judge12 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 30 |
ソースコード
import sys
import time
import random
import math
random.seed(42)
INF = 10**18
alpha = 5
alpha2 = alpha * alpha
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
class TimeKeeper:
"""
時間を管理するクラス
時間制限を秒単位で指定してインスタンスをつくる
"""
def __init__(self, time_threshold) -> None:
self.start_time_ = time.time()
self.time_threshold_ = time_threshold
def isTimeOver(self) -> bool:
"""
インスタンスを生成した時から指定した時間制限を超過したか判断する
超過している場合にTrue
"""
return time.time() - self.start_time_ - self.time_threshold_ >= 0
def time_msec(self) -> int:
"""経過時間をミリ秒単位で返す"""
return int((time.time() - self.start_time_) * 1000)
def time_sec(self) -> int:
"""経過時間を秒単位で返す(time_msecの使用を推奨)"""
return time.time()-self.start_time_
class Kmeans:
def __init__(self, X:list, n_data:int, k:int):
self.x = [[t.x, t.y] for t in X]
self.n_data = n_data
self.k = k
def init_centroid(self):
idx = random.sample(range(self.n_data), self.k)
centroids = [self.x[i] for i in idx]
return centroids
def compute_distance(self, centroids):
distances = []
for x in self.x:
dist = [math.sqrt(sum([(a - b) ** 2 for a, b in zip(x, centroid)])) for centroid in centroids]
distances.append(dist)
return distances
def clustering(self):
centroids = self.init_centroid()
new_cluster = [0]*self.n_data
cluster = [0]*self.n_data
for epoch in range(300):
distances = self.compute_distance(centroids)
new_cluster = [min(range(len(d)), key=lambda i: d[i]) for d in distances]
for idx_centroid in range(self.k):
x_in_cluster = [self.x[i] for i in range(self.n_data) if new_cluster[i] == idx_centroid]
if x_in_cluster:
centroids[idx_centroid] = [int(sum(coord)/len(x_in_cluster)) for coord in zip(*x_in_cluster)]
if new_cluster == cluster:
break
cluster = new_cluster
eprint(centroids)
eprint(cluster)
return centroids
class Input:
def __init__(self, N:int, M:int, ab:list) -> None:
self.N = N
self.M = M
self.ab = ab
class Parser:
def __init__(self, input_type:int):
self.flag = input_type
def parse(self):
if self.flag == -1:
inp:Input = self.parse_input()
else:
inp:Input = self.parse_input_file(self.flag)
return inp
def parse_input(self) -> Input:
N,M = map(int,input().split())
ab = [list(map(int,input().split())) for i in range(N)]
return Input(N,M,ab)
def parse_input_file(self,num) -> Input:
cnt = str(num).zfill(4)
PATH = f"./in/{cnt}.txt"
with open(PATH) as f:
l = [s.strip() for s in f.readlines()]
N, M = map(int,l[0].split())
ab = [list(map(int,s.split())) for s in l[1:]]
return Input(N, M, ab)
class Transit:
def __init__(self, id:int, x:int, y:int, type:int) -> None:
"""
id:int id of planet or station
x:int x coordinate
y:int y coordinate
type:int 1 planet, 2 station
"""
self.id = id
self.x = x
self.y = y
self.type = type
def __str__(self) -> str:
return f"({self.id},{self.x},{self.y},{self.type})"
class State:
def __init__(self, order:list, q_planets:list, q_stations:list) -> None:
"""
order:list visited order
q_stations:list[(int,int)] coordinates of space station
"""
self.order = order
self.q_planets = q_planets
self.q_stations = q_stations
def cal_dist(self, v1:Transit, v2:Transit) -> float:
"""
return distance between v1 and v2 weighted by coefficient
"""
x1,y1 = v1.x, v1.y
x2,y2 = v2.x, v2.y
coef = alpha
if v1.type == 1 and v2.type == 1: coef = alpha2 # planet to planet
elif v1.type == 2 and v2.type == 2: coef = 1 # station to station
d = ((x1-x2)**2+(y1-y2)**2) * coef
return d
def cal_score(self):
score = 0
for i in range(len(self.order)-1):
score += self.cal_dist(self.order[i], self.order[i+1])
return int(pow(10,9)/(1000+score**0.5))
class Output:
def __init__(self, state:State) -> None:
self.order = state.order
self.q_stations = state.q_stations
def ans(self):
for transition in self.q_stations:
print(transition.x, transition.y)
print(len(self.order))
for transition in self.order:
print(transition.type, transition.id+1)
class Solver:
def __init__(self, state:State) -> None:
self.state = state
def solve(self):
self.state.order.append(self.state.q_planets[0])
visited = [0]*len(self.state.q_planets)
visited[0] = 1
now = self.state.q_planets[0]
next = Transit(-1,-1,-1,-1)
n_visited = 1
while n_visited < len(self.state.q_planets):
d_min = INF
for transtion in self.state.q_planets:
if visited[transtion.id] == 1: continue
d = self.state.cal_dist(now, transtion)
if d_min > d:
d_min = d
next = transtion
if now.type != 2: #station to stationを許可するときはこのif文を消す 要改善
for transtion in self.state.q_stations:
if now == transtion: continue
d = self.state.cal_dist(now, transtion)
if d_min > d:
d_min = d
next = transtion
now = next
self.state.order.append(next)
if next.type == 1 and visited[next.id] == 0:
visited[next.id] = 1
n_visited += 1
self.state.order.append(self.state.q_planets[0])
return self.state
def main():
parser = Parser(-1)
input = parser.parse()
q_planets = []
for i in range(input.N):
q_planets.append(Transit(id = i, x = input.ab[i][0], y = input.ab[i][1], type = 1))
kmeans = Kmeans(q_planets, 100, 8)
a = kmeans.clustering()
q_stations = []
for i in range(input.M):
q_stations.append(Transit(id = i,x = a[i][0],y = a[i][1],type = 2))
state = State([], q_planets, q_stations)
solver = Solver(state)
best_ans = solver.solve()
best_score = best_ans.cal_score()
eprint(best_score)
tmp_stations = best_ans.q_stations
timeKeeper2 = TimeKeeper(0.84)
while not timeKeeper2.isTimeOver():
order = []
q_stations = []
for i in range(input.M):
q_stations.append(Transit(id = i,x = tmp_stations[i].x+random.randrange(-20,20), y = tmp_stations[i].y+random.randrange(-20,20), type = 2))
state = State(order,q_planets,q_stations)
solver = Solver(state)
ans = solver.solve()
score = ans.cal_score()
#eprint(score)
if score > best_score:
best_score = score
best_ans = ans
tmp_stations = q_stations
eprint(best_score)
output = Output(best_ans)
output.ans()
if __name__ == "__main__":
main()
dna4_