結果

問題 No.5007 Steiner Space Travel
ユーザー dna4_dna4_
提出日時 2023-04-25 01:46:19
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 969 ms / 1,000 ms
コード長 10,674 bytes
コンパイル時間 634 ms
コンパイル使用メモリ 87,292 KB
実行使用メモリ 97,856 KB
スコア 8,262,348
最終ジャッジ日時 2023-04-25 01:47:02
合計ジャッジ時間 32,394 ms
ジャッジサーバーID
(参考情報)
judge13 / judge12
純コード判定しない問題か言語
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 927 ms
94,616 KB
testcase_01 AC 949 ms
96,148 KB
testcase_02 AC 930 ms
96,188 KB
testcase_03 AC 935 ms
94,588 KB
testcase_04 AC 949 ms
92,144 KB
testcase_05 AC 954 ms
95,292 KB
testcase_06 AC 946 ms
95,960 KB
testcase_07 AC 922 ms
96,924 KB
testcase_08 AC 950 ms
96,436 KB
testcase_09 AC 946 ms
97,288 KB
testcase_10 AC 939 ms
97,856 KB
testcase_11 AC 918 ms
95,800 KB
testcase_12 AC 945 ms
96,648 KB
testcase_13 AC 926 ms
95,420 KB
testcase_14 AC 929 ms
95,972 KB
testcase_15 AC 937 ms
95,284 KB
testcase_16 AC 925 ms
94,044 KB
testcase_17 AC 967 ms
94,948 KB
testcase_18 AC 961 ms
94,516 KB
testcase_19 AC 921 ms
96,472 KB
testcase_20 AC 969 ms
96,344 KB
testcase_21 AC 933 ms
97,736 KB
testcase_22 AC 951 ms
95,444 KB
testcase_23 AC 968 ms
96,584 KB
testcase_24 AC 928 ms
95,432 KB
testcase_25 AC 925 ms
94,964 KB
testcase_26 AC 938 ms
96,724 KB
testcase_27 AC 926 ms
96,528 KB
testcase_28 AC 943 ms
94,352 KB
testcase_29 AC 969 ms
96,224 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
import time
import random
import math
import heapq
from collections import defaultdict

random.seed(42)

INF = 10**18

alpha = 5
alpha2 = alpha * alpha

def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)

class TimeKeeper:
    """
    時間を管理するクラス
    時間制限を秒単位で指定してインスタンスをつくる
    """
 
    def __init__(self, time_threshold) -> None:
        self.start_time_ = time.time()
        self.time_threshold_ = time_threshold
 
    def isTimeOver(self) -> bool:
        """
        インスタンスを生成した時から指定した時間制限を超過したか判断する  
        超過している場合にTrue  
        """
        return time.time() - self.start_time_ - self.time_threshold_ >= 0
 
    def time_msec(self) -> int:
        """経過時間をミリ秒単位で返す"""
        return int((time.time() - self.start_time_) * 1000)

    def time_sec(self) -> int:
        """経過時間を秒単位で返す(time_msecの使用を推奨)"""
        return time.time()-self.start_time_

class Kmeans:
    
    def __init__(self, X:list, n_data:int, k:int):
        self.x = [[t.x, t.y] for t in X]
        self.n_data = n_data
        self.k = k

    def init_centroid(self):
        idx = random.sample(range(self.n_data), self.k)
        centroids = [self.x[i] for i in idx]
        return centroids
    
    def compute_distance(self, centroids):
        distances = []
        for x in self.x:
            dist = [math.sqrt(sum([(a - b) ** 2 for a, b in zip(x, centroid)])) for centroid in centroids]
            distances.append(dist)
        return distances
    
    def clustering(self):
        centroids = self.init_centroid()
        new_cluster = [0]*self.n_data
        cluster = [0]*self.n_data
        for epoch in range(300):
            distances = self.compute_distance(centroids)
            new_cluster = [min(range(len(d)), key=lambda i: d[i]) for d in distances]
            for idx_centroid in range(self.k):
                x_in_cluster = [self.x[i] for i in range(self.n_data) if new_cluster[i] == idx_centroid]
                if x_in_cluster:
                    centroids[idx_centroid] = [int(sum(coord)/len(x_in_cluster)) for coord in zip(*x_in_cluster)]
            if new_cluster == cluster:
                break
        cluster = new_cluster
        return centroids


class Input:
    def __init__(self, N:int, M:int, ab:list) -> None:
        self.N = N
        self.M = M
        self.ab = ab

class Parser:

    def __init__(self, input_type:int):
        self.flag = input_type

    def parse(self):
        if self.flag == -1:
            inp:Input = self.parse_input()
        else:
            inp:Input = self.parse_input_file(self.flag)
        return inp
    
    def parse_input(self) -> Input:
        N,M = map(int,input().split())
        ab = [list(map(int,input().split())) for i in range(N)]
        return Input(N,M,ab)


    def parse_input_file(self,num) -> Input:
        cnt = str(num).zfill(4)
        PATH = f"./in/{cnt}.txt"
        with open(PATH) as f:
            l = [s.strip() for s in f.readlines()]
            N, M = map(int,l[0].split())
            ab = [list(map(int,s.split())) for s in l[1:]]
            return Input(N, M, ab)

class Transit:

    def __init__(self, id:int, x:int, y:int, type:int) -> None:
        """
        id:int id of planet or station
        x:int x coordinate
        y:int y coordinate
        type:int 1 planet, 2 station
        """
        self.id = id
        self.x = x
        self.y = y
        self.type = type
        self.key = self.type * 1000 + self.id

    def __lt__(self, other) -> bool:
        return self.key < other.key
    
    def __eq__(self, other) -> bool:
        return self.key == other.key
    
    def __str__(self) -> str:
        return f"({self.id},{self.x},{self.y},{self.type})"

class State:
    
    def __init__(self, order:list, planets:list, stations:list) -> None:
        """
        order:list visited order 
        stations:list[(int,int)] coordinates of space station
        """
        self.order = order
        self.planets = planets
        self.stations = stations
        self.links = self.prepare_edges()
        #eprint(self.links)
    
    def prepare_edges(self):
        """
        edges:dictを返す
        edges[Transit_from_key:int] = [(dist, Transit_to), ...]
        """
        edges = defaultdict(list)
        for planet_from in self.planets:
            for planet_to in self.planets: # planet to planet
                if planet_from == planet_to: continue
                edges[planet_from.key].append((self.cal_dist(planet_from, planet_to), planet_to))
            for station_to in self.stations: # planet to station
                edges[planet_from.key].append((self.cal_dist(planet_from, station_to), station_to))
        for station_from in self.stations: # station to station
            for planet_to in self.planets:
                edges[station_from.key].append((self.cal_dist(station_from, planet_to), planet_to))
            for station_to in self.stations:
                if station_from == station_to: continue
                edges[station_from.key].append((self.cal_dist(station_from, station_to), station_to))
        return edges

    
    def cal_dist(self, v1:Transit, v2:Transit) -> float:
        """
        return distance between v1 and v2 weighted by coefficient
        """
        x1,y1 = v1.x, v1.y
        x2,y2 = v2.x, v2.y
        coef = alpha
        if v1.type == 1 and v2.type == 1: coef = alpha2 # planet to planet
        elif v1.type == 2 and v2.type == 2: coef = 1 # station to station
        d = ((x1-x2)**2+(y1-y2)**2) * coef
        return d
    
    def cal_score(self):
        score = 0
        for i in range(len(self.order)-1):
            score += self.cal_dist(self.order[i], self.order[i+1])
        return int(pow(10,9)/(1000+score**0.5))

def trace(start:Transit, target:Transit, ancestors): 
    # s:source, t:target
    # dijksttra法の経路復元
    route = [target]
    now = target
    while True:
        pre = ancestors[now.key]
        route.append(pre)
        if pre == start:
            break
        now = pre
    route.reverse()
    return route

def dijkstra(start:Transit, target:Transit, links):
    heap = [(*l,start) for l in links[start.key]]
    heapq.heapify(heap)
    visited = set([start.key])
    ancestors = defaultdict(int)
    while heap:
        cost, to, ancestor = heapq.heappop(heap)
        if to.key in visited:
            continue
        visited.add(to.key)
        ancestors[to.key] = ancestor
        if to == target:
            return cost, trace(start,target,ancestors)
        for cost2, node2 in links[to.key]:
            if node2.key not in visited:
                heapq.heappush(heap, (cost+cost2, node2, to))
    return INF, None


class Output:
    
    def __init__(self, state:State) -> None:
        self.order = state.order
        self.stations = state.stations

    def ans(self):
        for transition in self.stations:
            print(transition.x, transition.y)
        print(len(self.order))
        for transition in self.order:
            print(transition.type, transition.id+1)

class Solver:
    def __init__(self, state:State) -> None:
        self.state = state

    def warshall_floyd(self):
        n = len(self.state.planets)
        dist = [[INF]*n for _ in range(n)]
        for i in range(n):
            dist[i][i] = 0
        for planet1 in self.state.planets:
            for planet2 in self.state.planets:
                dist[planet1.id][planet2.id] = self.state.cal_dist(planet1, planet2)
        for k in range(n):
            for i in range(n):
                for j in range(n):
                    dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])
        return dist
    
    def solve(self):
        
        dist_matrix = self.warshall_floyd()

        self.state.order.append(self.state.planets[0])
        visited = [0]*len(self.state.planets)
        visited[0] = 1
        now = self.state.planets[0]
        next = Transit(-1,-1,-1,-1)
        n_visited = set([0])
        
        while len(n_visited) < len(self.state.planets):
            next_dist = []
            for i in range(len(self.state.planets)):
                next_dist.append((dist_matrix[now.id][i], i))
            next_dist = sorted(next_dist, key=lambda x:x[0])
            for i in range(len(self.state.planets)):
                if visited[next_dist[i][1]] == 1: continue
                next = self.state.planets[next_dist[i][1]]
                break
            _, route = dijkstra(now, next, self.state.links)
            for transition in route:
                self.state.order.append(transition)
            now = next
            visited[next.id] = 1
            n_visited.add(next.id)

        _, route = dijkstra(now, self.state.planets[0], self.state.links)
        for transition in route:
            self.state.order.append(transition)
    
        return self.state

def main():

    timeKeeper2 = TimeKeeper(0.8)

    parser = Parser(-1)
    input = parser.parse()
    
    planets = []
    for i in range(input.N):
        planets.append(Transit(id = i, x = input.ab[i][0], y = input.ab[i][1], type = 1))

    kmeans = Kmeans(planets, 100, 8)
    a = kmeans.clustering()
    stations = []
    for i in range(input.M):
        stations.append(Transit(id = i,x = a[i][0],y = a[i][1],type = 2))
    state = State([], planets, stations)
    solver = Solver(state)
    best_ans = solver.solve()
    best_score = best_ans.cal_score()
    eprint(timeKeeper2.time_msec(), best_score)

    tmp_stations = best_ans.stations
    
    while not timeKeeper2.isTimeOver():
        order = []
        stations = []
        for i in range(input.M):
            x_new = 0
            y_new = 0
            while True:
                x_new = tmp_stations[i].x+random.randrange(-20,20)
                y_new = tmp_stations[i].y+random.randrange(-20,20)
                if x_new >= 0 and x_new <= 1000 and y_new >= 0 and y_new <= 1000:
                    break
            stations.append(Transit(id = i,x = x_new, y = y_new, type = 2))
        state = State(order,planets,stations)
        solver = Solver(state)
        ans = solver.solve()
        score = ans.cal_score()
        if score > best_score:
            eprint(timeKeeper2.time_msec(), score)
            best_score = score
            best_ans = ans
            tmp_stations = stations
    eprint(best_score)
    output = Output(best_ans)
    output.ans()


if __name__ == "__main__":
    main() 
0