結果
問題 | No.5007 Steiner Space Travel |
ユーザー | prussian_coder |
提出日時 | 2023-04-25 11:05:27 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 947 ms / 1,000 ms |
コード長 | 10,459 bytes |
コンパイル時間 | 538 ms |
コンパイル使用メモリ | 87,168 KB |
実行使用メモリ | 94,440 KB |
スコア | 8,338,577 |
最終ジャッジ日時 | 2023-04-25 11:06:00 |
合計ジャッジ時間 | 29,575 ms |
ジャッジサーバーID (参考情報) |
judge13 / judge14 |
純コード判定しない問題か言語 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 883 ms
92,496 KB |
testcase_01 | AC | 832 ms
91,932 KB |
testcase_02 | AC | 919 ms
94,440 KB |
testcase_03 | AC | 819 ms
91,308 KB |
testcase_04 | AC | 835 ms
91,620 KB |
testcase_05 | AC | 880 ms
91,616 KB |
testcase_06 | AC | 845 ms
91,504 KB |
testcase_07 | AC | 871 ms
91,908 KB |
testcase_08 | AC | 875 ms
91,956 KB |
testcase_09 | AC | 871 ms
91,840 KB |
testcase_10 | AC | 882 ms
92,500 KB |
testcase_11 | AC | 884 ms
92,804 KB |
testcase_12 | AC | 870 ms
92,720 KB |
testcase_13 | AC | 872 ms
92,372 KB |
testcase_14 | AC | 947 ms
92,832 KB |
testcase_15 | AC | 870 ms
91,560 KB |
testcase_16 | AC | 896 ms
92,560 KB |
testcase_17 | AC | 871 ms
91,640 KB |
testcase_18 | AC | 837 ms
90,916 KB |
testcase_19 | AC | 906 ms
92,872 KB |
testcase_20 | AC | 882 ms
92,396 KB |
testcase_21 | AC | 864 ms
92,036 KB |
testcase_22 | AC | 908 ms
92,844 KB |
testcase_23 | AC | 816 ms
92,344 KB |
testcase_24 | AC | 826 ms
91,248 KB |
testcase_25 | AC | 883 ms
92,972 KB |
testcase_26 | AC | 854 ms
92,508 KB |
testcase_27 | AC | 847 ms
92,024 KB |
testcase_28 | AC | 842 ms
90,960 KB |
testcase_29 | AC | 882 ms
92,532 KB |
ソースコード
#from matplotlib import pyplot as plt def visualize(N,M,pos,center_pos,allocate): fig = plt.figure(figsize=(10,10)) for i in range(N): plt.plot(pos[i][0],pos[i][1],color=color_ls[allocate[i]],marker=".") for i in range(M): plt.plot(center_pos[i][0],center_pos[i][1],color=color_ls[i],marker="*") plt.show() plt.close() INF=10**20 import random from pathlib import Path import time LOCAL = False in_path = "./test" img_path = "./image" color_ls = ["red","blue","green","orange","gray","pink","cyan","black"] def read_data(file): if LOCAL: with open(file,mode="r") as f: data = f.readlines() N,M = map(int,data[0].split()) pos = [[int(x) for x in data[i+1].split()] for i in range(N)] else: N,M=map(int,input().split()) pos = [[int(x) for x in input().split()] for i in range(N)] return N,M,pos #2点間の距離を返す def dist(p1,p2,a=25): return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2) * a #中心点と各惑星の距離を全探索し、短い順に並びかえる def calc_dist_from_center(N,M,center_pos,pos): dist_list = [] for m in range(M): for n in range(N): d = dist(pos[n],center_pos[m]) dist_list.append((d,m,n)) return sorted(dist_list) #中心点から近い惑星順にクラスわけする def allocate_cluster(N,M,center_pos,pos): dist_list = calc_dist_from_center(N,M,center_pos,pos) allocate = [-1]*N cluster_counts = [0]*M total_count = 0 for d,m,n in dist_list: if allocate[n]==-1: allocate[n]=m cluster_counts[m]+=1 total_count+=1 if total_count==N: break return allocate,cluster_counts #クラスター分けされた点をもとに、k-means法に倣って中心点を算出する。 # グループカウントが多いものは中心点を2つにして、クラスターを分ける。 def calc_center(N,M,pos,allocate,cluster_counts,max_size = 15,split_mode = True): point_sums = [[0,0] for _ in range(M)] for i in range(N): m=allocate[i] point_sums[m][0]+=pos[i][0] point_sums[m][1]+=pos[i][1] center_pos = [] #clsuter_countが大きい順に見ていき、中心点がM個を超えたら中断する if split_mode: order = sorted([(cluster_counts[i],i) for i in range(M)],reverse=True) else: order = [(cluster_counts[i],i) for i in range(M)] for _,m in order: if cluster_counts[m]==0: center_pos.append([random.randint(0,1000),random.randint(0,1000)]) else: center_pos.append([point_sums[m][0]//cluster_counts[m],point_sums[m][1]//cluster_counts[m]]) if cluster_counts[m]>=max_size and split_mode: x = point_sums[m][0]//cluster_counts[m] y = point_sums[m][1]//cluster_counts[m] dx = random.randint(-20,20) dy = random.randint(-20,20) while not (0<=x+dx<=1000 and 0<y+dy<=1000): dx = random.randint(-5,5) dy = random.randint(-5,5) center_pos.append([x+dx,y+dy]) if len(center_pos)==M: break return center_pos def calc_clustering_distance(center_pos,allocate,pos): total_dist = 0 for i in range(len(pos)): m = allocate[i] total_dist += dist(pos[i],center_pos[m]) return total_dist #K-means法に倣って惑星の点をグループ分けする def clustering(N,M,pos,max_size): center_pos = [[random.randint(0,1000),random.randint(0,1000)] for _ in range(M)] #ランダム初期化 allocate,cluster_counts= allocate_cluster(N,M,center_pos,pos) loop = 0 while True: center_pos = calc_center(N,M,pos,allocate,cluster_counts,max_size=max_size) allocate,cluster_counts = allocate_cluster(N,M,center_pos,pos) #print(loop,cluster_counts) if loop>=10 and max(cluster_counts)<=max_size: break loop+=1 center_pos = calc_center(N,M,pos,allocate,cluster_counts,split_mode=False) cluster_dist = calc_clustering_distance(center_pos,allocate,pos) #visualize(N,M,pos,center_pos,allocate) return center_pos,allocate,cluster_dist def f(S,x,n): return S*(n+1)+x #クラスター内にてBitDPでTSPを解く O(n^2*2^n) def tsp(id_list,pos,center_pos): #point 0~n-1が惑星、nが中心点 n=len(id_list)-1 dp = [INF]*(n+1)*(1<<n) dp[f(0,n,n)]=0 for S in range(1<<n): for s in range(n+1): if dp[f(S,s,n)]==INF: continue for t in range(n): if (S>>t)&1: continue S2 = S|(1<<t) if s!=n: dp[f(S2,t,n)]=min(dp[f(S,s,n)] + dist(pos[id_list[s]],pos[id_list[t]]),dp[f(S2,t,n)]) else: dp[f(S2,t,n)]=min(dp[f(S,s,n)] + dist(center_pos,pos[id_list[t]],a=5),dp[f(S2,t,n)]) dp[f(S2,n,n)]=min(dp[f(S2,t,n)] + dist(center_pos,pos[id_list[t]],a=5),dp[f(S2,n,n)]) #BitDPから復元 path_list = [n] state = (1<<n)-1 now = n v = dp[-1] e = 10**(-5) while state != 0 or now !=n: found = False if now == n: for t in range(n): d = dist(center_pos,pos[id_list[t]],a=5) if dp[f(state,t,n)]==INF: continue if v - dp[f(state,t,n)] >= d - e: path_list.append(t) now = t v -= d found = True break else: state = state ^ (1<<now) for t in range(n+1): if dp[f(state,t,n)]==INF: continue if t!=n: if not (state>>t)&1: continue d = dist(pos[id_list[now]],pos[id_list[t]]) else: d = dist(pos[id_list[now]],center_pos,a=5) if v - dp[f(state,t,n)] >= d - e: path_list.append(t) now = t v -= d found=True break return [id_list[i] for i in path_list] def tsp_between_space(center_pos): n = 8 dp = [[INF for _ in range(n)] for _ in range(1<<n)] dp[0][-1]=0 for S in range(1<<n): for s in range(n): if dp[S][s]==INF: continue for t in range(n): if (S>>t)&1: continue S2 = S|(1<<t) d = dist(center_pos[s],center_pos[t],a=1) dp[S2][t]=min(dp[S][s] + d, dp[S2][t]) #BitDPから復元 state = (1<<n)-1 s = n-1 path_list = [s] v = dp[-1][-1] e = 10**(-5) while state != 0: state ^=(1<<s) for t in range(n): if not (state>>t)&1: continue if dp[state][t]==INF: continue d = dist(center_pos[s],center_pos[t],a=1) if v - dp[state][t] >= d - e: path_list.append(t) s = t v -= d break return path_list def adjust_center_pos(path,pos,M): L=len(path) edge_count = [0]*M edge_x_sum = [0]*M edge_y_sum = [0]*M for i in range(L-1): if path[i]<0 and path[i+1]>=0: p,q = -path[i]-1,path[i+1] elif path[i]>=0 and path[i+1]<0: p,q = -path[i+1]-1,path[i] else: continue edge_count[p]+=1 edge_x_sum[p]+=pos[q][0] edge_y_sum[p]+=pos[q][1] center_pos = [[edge_x_sum[m]//edge_count[m],edge_y_sum[m]//edge_count[m]] for m in range(M)] return center_pos def calc_score(N,M,path,pos,center_pos): score = 0 L = len(path) for i in range(L-1): a=1 if path[i]>=0: p1 = pos[path[i]] a*=5 else: p1 = center_pos[-path[i]-1] if path[i+1]>=0: p2 = pos[path[i+1]] a*=5 else: p2 = center_pos[-path[i+1]-1] score += dist(p1,p2,a) return 10**9 / (1000 + score**0.5) def main(N,M,pos): #K-meansで8個に分割 best_dist = INF for _ in range(20): center_pos_temp,allocate_temp,cluster_dist = clustering(N,M,pos,21) if cluster_dist<best_dist: best_dist = cluster_dist center_pos = center_pos_temp allocate = allocate_temp ans = [] #クラスタ間での回る順番をTSPで決める space_order = tsp_between_space(center_pos) #クラスタ内で回る順番をTSPで決める for m in space_order: id_list = [i for i in range(N) if allocate[i]==m] n = len(id_list) #サイズが小さい時は全部使う if n<=12: ans += tsp(id_list+[-m-1],pos,center_pos[m]) #サイズが大きすぎる時は、clusteringで2つに分割してそれぞれでTSP else: pos2 = [pos[i] for i in id_list] _,allocate2,_ = clustering(n,2,pos2,12) for i2 in range(2): id_list2 = [id_list[i] for i in range(n) if allocate2[i]==i2] ans += tsp(id_list2+[-m-1],pos,center_pos[m]) #初期位置を0にする start_point = ans.index(0) ans = ans[start_point:]+ans[:start_point+1] #初期解 #center-posの位置を補正(最小二乗法の要領) center_pos = adjust_center_pos(ans,pos,M) score = calc_score(N,M,ans,pos,center_pos) return center_pos,ans,score def output(center_pos,ans): for x,y in center_pos: print(x,y) print(len(ans)) for a in ans: if a<0: print(2,-a) else: print(1,a+1) if LOCAL: file_ls = Path(in_path).glob("*.txt") for file in file_ls: print(file) N,M,pos = read_data(file) center_pos,ans,score = main(N,M,pos) output(center_pos,ans) else: N,M,pos = read_data("") best_score=0 for _ in range(2): center_pos,ans,score = main(N,M,pos) if score>best_score: best_score = score best_pos = center_pos best_ans = ans output(best_pos,best_ans)